基于shard-jdbc中间件,实现数据分库分表

2024-09-08 01:08

本文主要是介绍基于shard-jdbc中间件,实现数据分库分表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、水平分割 1、水平分库 1)、概念: 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。 2)、结果 每个库的结构都一样;数据都不一样; 所有库的并集是全量数据; 2、水平分表 1)、概念 以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。 2)、结果 每个表的结构都一样;数据都不一样; 所有表的并集是全量数据; 二、Shard-jdbc 中间件 1、架构图

2、特点 1)、Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。 2)、适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。 3)、可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。 4)、以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。 5)、分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。 6)、SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。

三、项目演示 1、项目结构

springboot     2.0 版本
druid          1.1.13 版本
sharding-jdbc  3.1 版本

2、数据库配置

一台基础库映射(shard_one)两台库做分库分表(shard_two,shard_three)。
表使用:table_one,table_two

3、核心代码块

1)、数据源配置文件

spring:datasource:# 数据源:shard_onedataOne:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000# 数据源:shard_twodataTwo:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000# 数据源:shard_threedataThree:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

2)、数据库分库策略

/*** 数据库映射计算*/
public class DataSourceAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分库算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "ds_" + ((hash % 2) + 2) ;}
}

3)、数据表1分表策略

/*** 分表算法*/
public class TableOneAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);/*** 该表每个库分5张表*/@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分表算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "table_one_" + (hash % 5+1);}
}

4)、数据表2分表策略

/*** 分表算法*/
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);/*** 该表每个库分5张表*/@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分表算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "table_two_" + (hash % 5+1);}
}

5)、数据源集成配置

/*** 数据库分库分表配置*/
@Configuration
public class ShardJdbcConfig {// 省略了 druid 配置,源码中有/*** Shard-JDBC 分库配置*/@Beanpublic DataSource dataSource (@Autowired DruidDataSource dataOneSource,@Autowired DruidDataSource dataTwoSource,@Autowired DruidDataSource dataThreeSource) throws Exception {ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());shardJdbcConfig.setDefaultDataSourceName("ds_0");Map<String,DataSource> dataMap = new LinkedHashMap<>() ;dataMap.put("ds_0",dataOneSource) ;dataMap.put("ds_2",dataTwoSource) ;dataMap.put("ds_3",dataThreeSource) ;Properties prop = new Properties();return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);}/*** Shard-JDBC 分表配置*/private static TableRuleConfiguration getTableRule01() {TableRuleConfiguration result = new TableRuleConfiguration();result.setLogicTable("table_one");result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));return result;}private static TableRuleConfiguration getTableRule02() {TableRuleConfiguration result = new TableRuleConfiguration();result.setLogicTable("table_two");result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));return result;}
}

6)、测试代码执行流程

@RestController
public class ShardController {@Resourceprivate ShardService shardService ;/*** 1、建表流程*/@RequestMapping("/createTable")public String createTable (){shardService.createTable();return "success" ;}/*** 2、生成表 table_one 数据*/@RequestMapping("/insertOne")public String insertOne (){shardService.insertOne();return "SUCCESS" ;}/*** 3、生成表 table_two 数据*/@RequestMapping("/insertTwo")public String insertTwo (){shardService.insertTwo();return "SUCCESS" ;}/*** 4、查询表 table_one 数据*/@RequestMapping("/selectOneByPhone/{phone}")public TableOne selectOneByPhone (@PathVariable("phone") String phone){return shardService.selectOneByPhone(phone);}/*** 5、查询表 table_one 数据*/@RequestMapping("/selectTwoByPhone/{phone}")public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){return shardService.selectTwoByPhone(phone);}
}

本文分享自微信公众号 - 知了一笑(cicada_smile)

这篇关于基于shard-jdbc中间件,实现数据分库分表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146684

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola