基于shard-jdbc中间件,实现数据分库分表

2024-09-08 01:08

本文主要是介绍基于shard-jdbc中间件,实现数据分库分表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、水平分割 1、水平分库 1)、概念: 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。 2)、结果 每个库的结构都一样;数据都不一样; 所有库的并集是全量数据; 2、水平分表 1)、概念 以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。 2)、结果 每个表的结构都一样;数据都不一样; 所有表的并集是全量数据; 二、Shard-jdbc 中间件 1、架构图

2、特点 1)、Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。 2)、适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。 3)、可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。 4)、以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。 5)、分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。 6)、SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。

三、项目演示 1、项目结构

springboot     2.0 版本
druid          1.1.13 版本
sharding-jdbc  3.1 版本

2、数据库配置

一台基础库映射(shard_one)两台库做分库分表(shard_two,shard_three)。
表使用:table_one,table_two

3、核心代码块

1)、数据源配置文件

spring:datasource:# 数据源:shard_onedataOne:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000# 数据源:shard_twodataTwo:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000# 数据源:shard_threedataThree:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

2)、数据库分库策略

/*** 数据库映射计算*/
public class DataSourceAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分库算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "ds_" + ((hash % 2) + 2) ;}
}

3)、数据表1分表策略

/*** 分表算法*/
public class TableOneAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);/*** 该表每个库分5张表*/@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分表算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "table_one_" + (hash % 5+1);}
}

4)、数据表2分表策略

/*** 分表算法*/
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);/*** 该表每个库分5张表*/@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分表算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "table_two_" + (hash % 5+1);}
}

5)、数据源集成配置

/*** 数据库分库分表配置*/
@Configuration
public class ShardJdbcConfig {// 省略了 druid 配置,源码中有/*** Shard-JDBC 分库配置*/@Beanpublic DataSource dataSource (@Autowired DruidDataSource dataOneSource,@Autowired DruidDataSource dataTwoSource,@Autowired DruidDataSource dataThreeSource) throws Exception {ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());shardJdbcConfig.setDefaultDataSourceName("ds_0");Map<String,DataSource> dataMap = new LinkedHashMap<>() ;dataMap.put("ds_0",dataOneSource) ;dataMap.put("ds_2",dataTwoSource) ;dataMap.put("ds_3",dataThreeSource) ;Properties prop = new Properties();return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);}/*** Shard-JDBC 分表配置*/private static TableRuleConfiguration getTableRule01() {TableRuleConfiguration result = new TableRuleConfiguration();result.setLogicTable("table_one");result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));return result;}private static TableRuleConfiguration getTableRule02() {TableRuleConfiguration result = new TableRuleConfiguration();result.setLogicTable("table_two");result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));return result;}
}

6)、测试代码执行流程

@RestController
public class ShardController {@Resourceprivate ShardService shardService ;/*** 1、建表流程*/@RequestMapping("/createTable")public String createTable (){shardService.createTable();return "success" ;}/*** 2、生成表 table_one 数据*/@RequestMapping("/insertOne")public String insertOne (){shardService.insertOne();return "SUCCESS" ;}/*** 3、生成表 table_two 数据*/@RequestMapping("/insertTwo")public String insertTwo (){shardService.insertTwo();return "SUCCESS" ;}/*** 4、查询表 table_one 数据*/@RequestMapping("/selectOneByPhone/{phone}")public TableOne selectOneByPhone (@PathVariable("phone") String phone){return shardService.selectOneByPhone(phone);}/*** 5、查询表 table_one 数据*/@RequestMapping("/selectTwoByPhone/{phone}")public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){return shardService.selectTwoByPhone(phone);}
}

本文分享自微信公众号 - 知了一笑(cicada_smile)

这篇关于基于shard-jdbc中间件,实现数据分库分表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146684

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco