基于shard-jdbc中间件,实现数据分库分表

2024-09-08 01:08

本文主要是介绍基于shard-jdbc中间件,实现数据分库分表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、水平分割 1、水平分库 1)、概念: 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。 2)、结果 每个库的结构都一样;数据都不一样; 所有库的并集是全量数据; 2、水平分表 1)、概念 以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。 2)、结果 每个表的结构都一样;数据都不一样; 所有表的并集是全量数据; 二、Shard-jdbc 中间件 1、架构图

2、特点 1)、Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。 2)、适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。 3)、可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。 4)、以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。 5)、分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。 6)、SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。

三、项目演示 1、项目结构

springboot     2.0 版本
druid          1.1.13 版本
sharding-jdbc  3.1 版本

2、数据库配置

一台基础库映射(shard_one)两台库做分库分表(shard_two,shard_three)。
表使用:table_one,table_two

3、核心代码块

1)、数据源配置文件

spring:datasource:# 数据源:shard_onedataOne:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000# 数据源:shard_twodataTwo:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000# 数据源:shard_threedataThree:type: com.alibaba.druid.pool.DruidDataSourcedruid:driverClassName: com.mysql.jdbc.Driverurl: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=falseusername: rootpassword: 123initial-size: 10max-active: 100min-idle: 10max-wait: 60000pool-prepared-statements: truemax-pool-prepared-statement-per-connection-size: 20time-between-eviction-runs-millis: 60000min-evictable-idle-time-millis: 300000max-evictable-idle-time-millis: 60000validation-query: SELECT 1 FROM DUAL# validation-query-timeout: 5000test-on-borrow: falsetest-on-return: falsetest-while-idle: trueconnectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000

2)、数据库分库策略

/*** 数据库映射计算*/
public class DataSourceAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分库算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "ds_" + ((hash % 2) + 2) ;}
}

3)、数据表1分表策略

/*** 分表算法*/
public class TableOneAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);/*** 该表每个库分5张表*/@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分表算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "table_one_" + (hash % 5+1);}
}

4)、数据表2分表策略

/*** 分表算法*/
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);/*** 该表每个库分5张表*/@Overridepublic String doSharding(Collection<String> names, PreciseShardingValue<String> value) {LOG.debug("分表算法参数 {},{}",names,value);int hash = HashUtil.rsHash(String.valueOf(value.getValue()));return "table_two_" + (hash % 5+1);}
}

5)、数据源集成配置

/*** 数据库分库分表配置*/
@Configuration
public class ShardJdbcConfig {// 省略了 druid 配置,源码中有/*** Shard-JDBC 分库配置*/@Beanpublic DataSource dataSource (@Autowired DruidDataSource dataOneSource,@Autowired DruidDataSource dataTwoSource,@Autowired DruidDataSource dataThreeSource) throws Exception {ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());shardJdbcConfig.setDefaultDataSourceName("ds_0");Map<String,DataSource> dataMap = new LinkedHashMap<>() ;dataMap.put("ds_0",dataOneSource) ;dataMap.put("ds_2",dataTwoSource) ;dataMap.put("ds_3",dataThreeSource) ;Properties prop = new Properties();return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);}/*** Shard-JDBC 分表配置*/private static TableRuleConfiguration getTableRule01() {TableRuleConfiguration result = new TableRuleConfiguration();result.setLogicTable("table_one");result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));return result;}private static TableRuleConfiguration getTableRule02() {TableRuleConfiguration result = new TableRuleConfiguration();result.setLogicTable("table_two");result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));return result;}
}

6)、测试代码执行流程

@RestController
public class ShardController {@Resourceprivate ShardService shardService ;/*** 1、建表流程*/@RequestMapping("/createTable")public String createTable (){shardService.createTable();return "success" ;}/*** 2、生成表 table_one 数据*/@RequestMapping("/insertOne")public String insertOne (){shardService.insertOne();return "SUCCESS" ;}/*** 3、生成表 table_two 数据*/@RequestMapping("/insertTwo")public String insertTwo (){shardService.insertTwo();return "SUCCESS" ;}/*** 4、查询表 table_one 数据*/@RequestMapping("/selectOneByPhone/{phone}")public TableOne selectOneByPhone (@PathVariable("phone") String phone){return shardService.selectOneByPhone(phone);}/*** 5、查询表 table_one 数据*/@RequestMapping("/selectTwoByPhone/{phone}")public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){return shardService.selectTwoByPhone(phone);}
}

本文分享自微信公众号 - 知了一笑(cicada_smile)

这篇关于基于shard-jdbc中间件,实现数据分库分表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146684

相关文章

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因