算法专题一: 双指针

2024-09-08 00:44
文章标签 算法 指针 专题

本文主要是介绍算法专题一: 双指针,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 1. 移动零(easy)
  • 2. 复写零(easy)
  • 3. 快乐数(medium)
  • 4. 盛水最多的容器(medium)
  • 5. 有效三角形的个数(medium)
  • 6. 和为 s 的两个数字(easy)
  • 7. 三数之和(medium)
  • 8. 四数之和(medium)

前言

常见的双指针有两种形式,一种是对撞指针,一种是左右指针。

1. 对撞指针: ⼀般用于顺序结构中,也称左右指针。

  • 对撞指针从两端向中间移动。⼀个指针从最左端开始,另⼀个从最右端开始,然后逐渐往中间逼近。
  • 对撞指针的终止条件⼀般是两个指针相遇或者错开(也可能在循环内部找到结果直接跳出循环),也就是:
    ◦ left == right (两个指针指向同⼀个位置)
    ◦ left > right (两个指针错开)

2. 快慢指针:又称为龟兔赛跑算法,其基本思想就是使用两个移动速度不同的指针在数组或链表等序列结构上移动。

这种方法对于处理环形链表或数组非常有用。

其实不单单是环形链表或者是数组,如果我们要研究的问题出现循环往复的情况时,均可考虑使用快慢指针的思想。

快慢指针的实现方式有很多种,最常用的⼀种就是:
• 在一次循环中,每次让慢的指针向后移动⼀位,而快的指针往后移动两位,实现一快一慢。

1. 移动零(easy)

题目链接:移动零

在这里插入图片描述
思想

在本题中,我们可以用一个 cur 指针来扫描整个数组,另一个 dest 指针用来记录非零数序列的最后一个位置。根据 cur 在扫描的过程中,遇到的不同情况,分类处理,实现数组的划分。

在这里插入图片描述

class Solution {
public:void moveZeroes(vector<int>& nums) {for(int cur = 0, dest = -1;cur<nums.size();++cur){if(nums[cur]!=0){++dest;swap(nums[dest],nums[cur]);}}}
};

2. 复写零(easy)

题目链接: 复写零

在这里插入图片描述
算法思路

在这里插入图片描述

如果从前向后进行原地复写操作的话,由于0的出现会复写两次,导致没有复写的数被覆盖掉,因此我们选择从后往前的复写策略,但是从后往前复写的时候,我们需要找到最后一个复写的数,因此我们的大体流程分为两步:

  1. 先找到最后一个复写的数;
  2. 然后从后往前进行复写操作.
class Solution {
public:void duplicateZeros(vector<int>& arr) {int cur = 0, dest = -1;while(cur < arr.size()){if(arr[cur])++dest;elsedest+=2;if(dest >= arr.size()-1)break;++cur;}if(dest == arr.size()){dest--;arr[dest--] = 0;cur--;}while(cur>=0){if(arr[cur]){arr[dest--] = arr[cur--];}else{arr[dest--] = 0;arr[dest--] = 0;cur--;}}}
};

3. 快乐数(medium)

题目链接: 快乐数

在这里插入图片描述
算法思路

根据分析我们可以知道, 当重复执行x的时候, 数据就会陷入到一个循环中, 而快慢指针有一个特性,就是在一个圆圈中, 快指针总是会追上慢指针的,也就是说他们会相遇在一个位置上, 如果相遇位置的值是1, 那么这个数一定是快乐数, 如果相遇的位置不是1的话, 那么这个数就不是快乐数.

在这里插入图片描述

class Solution {
public:int mutify(int n){int ret =  0;while(n){int ge = n % 10;ret += ge*ge;n/=10;}return ret;}bool isHappy(int n) {int fast = mutify(n), slow = n;while(fast != slow){fast = mutify(mutify(fast));slow = mutify(slow);}return fast==1;}
};

4. 盛水最多的容器(medium)

题目链接: 盛水最多的容器

在这里插入图片描述

算法思路

设置两个指针left,right分别指向容器的左右两个端点,此时容器的容积v = (right - left) * min(hegiht[right] , height[left]). 容器的左边界为height[left], 右边界为height[right].如果此时我们固定一个边界, 改变另一个边界,水的容积会有如下变化形式:

  1. 容器的宽度一定变小.
  2. 由于左边界较小, 决定了水的高度,如果改变左边界,新的水面高度不确定,但是一定不会超过右边的柱子高度,因此容器的容积可能会增大.
  3. 如果改变右边界,无论右边界移动到哪里,新的水面的高度一定不会超过左边界,也就是不会超过现在的水面高度,但是由于容器的宽度减小,因此容器的容积一定会变小.

由此我们可以left++跳过,舍弃左边界和它的组合情况,继续下一个判断, 不断重复, 就可以舍去大量不必要的枚举过程,直到left和right相遇.

在这里插入图片描述

class Solution {
public:int maxArea(vector<int>& height) {int left = 0, right = height.size()-1, ret = 0;while(left < right){int v = min(height[left],height[right]) * (right - left);ret = max(v,ret);if(height[left]<height[right])left++;else right--;}return ret;}
};

5. 有效三角形的个数(medium)

题目链接: 有效的三角形个数

在这里插入图片描述
算法思路

在这里插入图片描述

class Solution {
public:int triangleNumber(vector<int>& nums) {sort(nums.begin(),nums.end());int ret = 0;for(int i = nums.size()-1;i>=2;i--){int left = 0,right = i-1;while(left<right){if(nums[left]+nums[right] <= nums[i]){left++;}else{ret+=right - left;right--;}}  }return ret;}
};

6. 和为 s 的两个数字(easy)

题目链接: 查找总价格为目标值的两个商品

在这里插入图片描述算法思路

在这里插入图片描述

class Solution {
public:vector<int> twoSum(vector<int>& price, int target) {int left = 0, right = price.size()-1;while(left < right){if(price[left]+price[right] > target){right--;}else if(price[left]+price[right]<target){left++;}else{return {price[left],price[right]};}}return {-1,-1};}
};

7. 三数之和(medium)

题目链接: 三数之和

在这里插入图片描述
算法思路

在这里插入图片描述

class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {sort(nums.begin(),nums.end());vector<vector<int>> vv;int n = nums.size();for(int i = 0; i<n;){int target = -nums[i];int left = i+1,right = n-1;while(left<right){int sum = nums[left]+nums[right];if(sum < target) left++;else if(sum > target) right--;else  {vv.push_back({nums[left],nums[right],nums[i]});left++,right--;while(left<right&&nums[left]==nums[left-1]) left++;while(left<right&&nums[right]==nums[right+1]) right--;}}i++;while(i<n&&nums[i]==nums[i-1]) i++;}return vv; }
};

8. 四数之和(medium)

题目链接: 四数之和

在这里插入图片描述

算法思路

在这里插入图片描述

class Solution {
public:vector<vector<int>> fourSum(vector<int>& nums, int target) {sort(nums.begin(),nums.end());vector<vector<int>> vv;int n = nums.size();for(int i = 0; i < n ;){for(int j = i+1;j<n;){long long a = (long long)target - nums[i] - nums[j];int left = j+1,right =n-1;while(left<right){int sum = nums[left] + nums[right];if(sum<a) left++;else if(sum>a) right--;else{vv.push_back({nums[left],nums[right],nums[i],nums[j]});left++,right--;//去重1while(left<right && nums[left] == nums[left-1]) left++;while(left<right && nums[right] == nums[right+1]) right--;}}j++;//去重2while(j<n && nums[j] == nums[j-1]) j++;}i++;while(i<n&&nums[i] == nums[i-1]) i++;    }return vv;}};

这篇关于算法专题一: 双指针的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1146633

相关文章

Java空指针异常NullPointerException的原因与解决方案

《Java空指针异常NullPointerException的原因与解决方案》在Java开发中,NullPointerException(空指针异常)是最常见的运行时异常之一,通常发生在程序尝试访问或... 目录一、空指针异常产生的原因1. 变量未初始化2. 对象引用被显式置为null3. 方法返回null

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

go 指针接收者和值接收者的区别小结

《go指针接收者和值接收者的区别小结》在Go语言中,值接收者和指针接收者是方法定义中的两种接收者类型,本文主要介绍了go指针接收者和值接收者的区别小结,文中通过示例代码介绍的非常详细,需要的朋友们下... 目录go 指针接收者和值接收者的区别易错点辨析go 指针接收者和值接收者的区别指针接收者和值接收者的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.