Python利用pyecharts实现数据可视化

2024-09-07 20:12

本文主要是介绍Python利用pyecharts实现数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        小编会持续更新知识笔记,如果感兴趣可以三连支持。闲来无事,水文一篇,不过上手实践一下倒还是挺好玩的,这一块知识说不定以后真可以尝试拿来做数据库的报表显示。

        有梦别怕苦,想赢别喊累。

目录

前言

JSON数据格式的转换

pyecharts简介和入门使用


前言

      小编我今天闲来无事,打算学习一下py,结果你猜怎么着,竟然看到py可以将数据可视化,做成报表显示,这对于一直学Java的我来说,这东西可太东西了,这要是不学一下你受得了吗?高低得学他一下啊。

        这个py数据可视化也是用了第三方技术叫做Echarts,是由百度开发得一个数据可视化的框架,本来嘛使用于JS的,但是py那么火,自然他也就提供了py可用的第三方包了,但是有没有提供Java的jar包呢,这个有时间倒是可以去考察一下。

JSON数据格式的转换

        这个东西既然扯到数据了,JSON是逃不掉的,虽然我知道这玩意大家很熟了,但是我还是得水一下文章的。JSON是一种轻量级得数据交互格式。可以按照JSON指定得格式去组织和封装数据。本质上就是一个带有特定格式的字符串。JSON主要就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互。类似于国际通用语言英语,中国通用语言普通话。

        具体格式就像上面这样,其实就和py中定义字典或者列表内部嵌套字典差不多,键:值,不同键用逗号隔开。所以在py中去实现Python数据和Json数据的相互转换倒是很方便,我们只要导入对应的json模块,然后使用里面提供好的方法就好了。

         下面我们就来演示一下json模块的使用吧,因为存在中文的编码问题,所以我们还需要传入一个关键参数ensure_ascii=False

import jsondata = [{"name": "张大山", "age": 11}, {"name": "王大锤", "age": 13}, {"name": "赵小虎", "age": 16}]# python 转 json
json_str = json.dumps(data, ensure_ascii=False)
print(type(json_str))
print(json_str)# json 转 python
s = '[{"name":"张大山","age":11},{"name":"王大锤","age":13},{"name":"赵小虎","age":16}]'
l = json.loads(s)
print(type(l))
print(l)

        以上就是py实现JSON数据格式互相转换,主意好列表和字典的格式后就dumpsloads两个方法。

pyecharts简介和入门使用

        通过前面我们也知道了pyecharts就是一款第三方可视化数据框架,下面这个就是pyecharts的官网

渲染图表 - pyecharts - A Python Echarts Plotting Library built with love.icon-default.png?t=O83Ahttps://05x-docs.pyecharts.org/#/zh-cn/prepare        官网其实还是挺好玩的,有好多报表图模型,想用哪个就可以参考它的代码,然后照葫芦画瓢就可以实现出来。下面这个是pyecharts的一个画廊网址也是挺不错的。

中文简介 - Document (pyecharts.org)icon-default.png?t=O83Ahttps://gallery.pyecharts.org/#/README        至于怎么安装pycharts,其实分为两种方式,第一种就是我们可以通过命令行来安装。如果你写代码用的是第二种就是通过pyCharm来安装。

        第一种我们win加r输入cmd打开命令行窗口,接着输入下面这行命令直接回车等待下载完成就好了。

pip install pyecharts

        接着检验是否安装好了,我们可以通过输入python,然后尝试import pyecharts导入一下,如果没有问题,就证明导入成功了。

        第二种方法就是我们可以通过右下角的设置里的解释器设置中的添加解释器搜索pyecharts进行安装就好了。

        接着我们来看看pyecharts如何使用,其实这一块呢也是非常简单,我们只需要照着官网的模板照葫芦画瓢就好了 ,我们就来做一个折线图图像吧。这一块我们首先就是要导入Line这个类,顾名思义就是来画线的。这里我们用到了两个方法,一个是add_xaxis()用来标明x轴的数据项有哪些,add_yaxis()用来标明y轴数据项表示的内容和数据值。这一块第一个数据项不能省略,因为你总不能y轴都不表示什么含义吧,接着我们就可以调用render方法就可以将代码生成图像。

# 导包
from pyecharts.charts import Line# 创建一个折线图对象
line = Line()
# 给折线图对象添加x轴的数据
line.add_xaxis(["中国","美国","英国"])
# 给折线图对象添加y轴的数据
line.add_yaxis("GDP",[30,20,10])
# 通过render方法,将代码生成为图像
line.render()

        接着我们右键运行,就可以看到我们当前目录下多了一个叫render.html的文件,相信你也知道这是一个前端界面文件,感兴趣的可以打开看看,我们直接用浏览器打开就会得到我们上面绘制的折线图了。

        其实上面这个图片看着还是有点单调的,我们还可以给他添点和数据无关的东西,比如标题,工具箱,  鼠标移动效果等。这些叫做全局配置选项,而上面我们配置的叫做系列配置选项。配置全局配置选项其实也很简单,照着官网找到我们想要的直接CV就好了。 

# 设置全局配置项
line.set_global_opts(# 设置标题内容以及位置title_opts=TitleOpts(title="GDP展示", pos_left="center", pos_bottom="1%"),# 设置图例是否显示legend_opts=LegendOpts(is_show=True),# 设置工具箱是否显示toolbox_opts=ToolboxOpts(is_show=True),# 设置视觉映射是否显示visualmap_opts=VisualMapOpts(is_show=True),
)# 通过render方法,将代码生成为图像
line.render()

        这里我是配置好了标题,图例,工具箱和鼠标移动效果,当然你还可以配置些别的,这里只是演示用法。记住我们要把render()方法放在最后,不然就设置不成功了。

        这里我把鼠标放在上面确实有了显示,下方也多了一个标题,右上角也多了一个工具箱,工具箱支持很多功能例如保存图片,切换柱状图,展示数据等等,功能还是非常丰富的。 

        到这里我们pyecharts的入门使用就到此为止了,是不是特别简单,我们只需要把官网的模板拿过来照葫芦画瓢就好了。

        这东西上手还是挺简单的,只要可以拿到JSON数据,然后照葫芦画瓢就好了,业务在于如何拿到JSON数据然后转换,绘制可视化图形就是美工了。

        带着决心起床,带着满意入睡。

这篇关于Python利用pyecharts实现数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146040

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法