Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)

本文主要是介绍Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯受激发射损耗显微镜算法模型:🖊恢复嘈杂二维和三维图像 | 🖊模型架构:恢复上下文信息和超分辨率图像 | 🖊使用嘈杂和高信噪比的图像训练模型 | 🖊准备半合成训练集 | 🖊优化沙邦尼尔损失和边缘损失 | 🖊使用峰值信噪比、归一化均方误差和多尺度结构相似性指数量化结果 | 🎯训练荧光显微镜模型和对抗网络图形转换模型

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python图像归一化

在图像处理中,归一化是改变像素强度值范围的过程。例如,应用包括由于眩光而对比度较差的照片。归一化有时称为对比度拉伸或直方图拉伸。在更一般的数据处理领域(例如数字信号处理),它被称为动态范围扩展。

在各种应用中,动态范围扩展的目的通常是将图像或其他类型的信号带入感官更熟悉或正常的范围,因此称为归一化。通常,其动机是使一组数据、信号或图像的动态范围保持一致,以避免精神分散或疲劳。例如,报纸会努力使一期中的所有图像都具有相似的灰度范围。

归一化对 n 维灰度图像 I : { X ⊆ R n } → { I:\left\{ X \subseteq R ^n\right\} \rightarrow\{ I:{XRn}{ Min, …, Max } \} } 进行变换,强度值在 (Min, Max) 范围内),转换为新图像 I N : { X ⊆ R n } → { I_N:\left\{ X \subseteq R ^n\right\} \rightarrow\{ IN:{XRn}{ newMin, …, newMax } \} },强度值在 (newMin, newMax) 范围内。灰度数字图像的线性归一化根据以下公式进行:
I N = ( I − Min ⁡ ) newMax  − newMin  Max ⁡ − Min  + newMin  I_N=(I-\operatorname{Min}) \frac{\text { newMax }- \text { newMin }}{\operatorname{Max}-\text { Min }}+\text { newMin } IN=(IMin)Max Min  newMax  newMin + newMin 
例如,如果图像的强度范围是 50 到 180,而所需范围是 0 到 255,则该过程需要从每个像素强度中减去 50,使得范围为 0 到 130。然后将每个像素强度乘以 255/130,使得范围为 0 到 255。

归一化也可能是非线性的,当 I I I I N I_N IN 之间不存在线性关系时就会发生这种情况。非线性归一化的一个例子是当归一化遵循 sigmoid 函数时,在这种情况下,归一化图像根据以下公式计算:
I N = ( newMax  − newMin  ) 1 1 + e − I − β α + newMin  I_N=(\text { newMax }- \text { newMin }) \frac{1}{1+e^{-\frac{I-\beta}{\alpha}}}+\text { newMin } IN=( newMax  newMin )1+eαIβ1+ newMin 
其中 α \alpha α 定义输入强度范围的宽度, β \beta β 定义输入强度范围的中心强度。

图像处理软件中的自动归一化通常归一化为图像文件格式中指定的数字系统的完整动态范围。

PyTorch归一化图像

PyTorch 中的标准化是使用 torchvision.transforms.Normalize() 完成的。这用平均值和标准差对张量图像进行归一化


from PIL import Image
import matplotlib.pyplot as plt
import numpy as npimg_path = 'Koa.jpg'
img = Image.open(img_path)img_np = np.array(img)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

从结果,我们发现RGB图像的像素值范围是0到255。

使用 ToTensor() 将 PIL 图像转换为 PyTorch 张量,并绘制该张量图像的像素值。我们定义变换函数将 PIL 图像转换为 PyTorch 张量图像。

import torchvision.transforms as transforms
import matplotlib.pyplot as plttransform = transforms.Compose([transforms.ToTensor()
])img_tr = transform(img)
img_np = np.array(img_tr)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

从结果,我们发现张量图像的像素值范围从0.0到1.0。我们注意到 RBG 和张量图像的像素分布看起来相同,但像素值范围不同。

我们计算图像的平均值和标准差:

img_tr = transform(img)
mean, std = img_tr.mean([1,2]), img_tr.std([1,2])print("mean and std before normalize:")
print("Mean of the image:", mean)
print("Std of the image:", std)
标准化前的均值和标准差: 
图像的均值:tensor([0.4916, 0.4498, 0.4000]) 
图像的标准差:tensor([0.2474, 0.2362, 0.2322])

为了归一化图像,我们在这里使用上面计算的图像平均值和标准差。如果图像与 ImageNet 图像相似,我们也可以使用 ImageNet 数据集的平均值和标准差。ImageNet 的平均值和标准差为:平均值 = [0.485, 0.456, 0.406] 和标准差 = [0.229, 0.224, 0.225]。如果图像与 ImageNet 不相似(如医学图像),则始终建议计算数据集的平均值和标准差并使用它们来归一体图像。

from torchvision import transformstransform_norm = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)
])img_normalized = transform_norm(img)
img_np = np.array(img_normalized)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

我们已经用计算出的平均值和标准差对图像进行了归一化。上面的输出显示了归一化图像的像素值分布。我们可以注意到张量图像(归一化之前)和归一化图像的像素分布之间的差异。

现在可视化标准化图像:

img_normalized = transform_norm(img)
img_normalized = np.array(img_normalized)
img_normalized = img_normalized.transpose(1, 2, 0)plt.imshow(img_normalized)
plt.xticks([])
plt.yticks([])

👉参阅、更新:计算思维 | 亚图跨际

这篇关于Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144718

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库