Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)

本文主要是介绍Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯受激发射损耗显微镜算法模型:🖊恢复嘈杂二维和三维图像 | 🖊模型架构:恢复上下文信息和超分辨率图像 | 🖊使用嘈杂和高信噪比的图像训练模型 | 🖊准备半合成训练集 | 🖊优化沙邦尼尔损失和边缘损失 | 🖊使用峰值信噪比、归一化均方误差和多尺度结构相似性指数量化结果 | 🎯训练荧光显微镜模型和对抗网络图形转换模型

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python图像归一化

在图像处理中,归一化是改变像素强度值范围的过程。例如,应用包括由于眩光而对比度较差的照片。归一化有时称为对比度拉伸或直方图拉伸。在更一般的数据处理领域(例如数字信号处理),它被称为动态范围扩展。

在各种应用中,动态范围扩展的目的通常是将图像或其他类型的信号带入感官更熟悉或正常的范围,因此称为归一化。通常,其动机是使一组数据、信号或图像的动态范围保持一致,以避免精神分散或疲劳。例如,报纸会努力使一期中的所有图像都具有相似的灰度范围。

归一化对 n 维灰度图像 I : { X ⊆ R n } → { I:\left\{ X \subseteq R ^n\right\} \rightarrow\{ I:{XRn}{ Min, …, Max } \} } 进行变换,强度值在 (Min, Max) 范围内),转换为新图像 I N : { X ⊆ R n } → { I_N:\left\{ X \subseteq R ^n\right\} \rightarrow\{ IN:{XRn}{ newMin, …, newMax } \} },强度值在 (newMin, newMax) 范围内。灰度数字图像的线性归一化根据以下公式进行:
I N = ( I − Min ⁡ ) newMax  − newMin  Max ⁡ − Min  + newMin  I_N=(I-\operatorname{Min}) \frac{\text { newMax }- \text { newMin }}{\operatorname{Max}-\text { Min }}+\text { newMin } IN=(IMin)Max Min  newMax  newMin + newMin 
例如,如果图像的强度范围是 50 到 180,而所需范围是 0 到 255,则该过程需要从每个像素强度中减去 50,使得范围为 0 到 130。然后将每个像素强度乘以 255/130,使得范围为 0 到 255。

归一化也可能是非线性的,当 I I I I N I_N IN 之间不存在线性关系时就会发生这种情况。非线性归一化的一个例子是当归一化遵循 sigmoid 函数时,在这种情况下,归一化图像根据以下公式计算:
I N = ( newMax  − newMin  ) 1 1 + e − I − β α + newMin  I_N=(\text { newMax }- \text { newMin }) \frac{1}{1+e^{-\frac{I-\beta}{\alpha}}}+\text { newMin } IN=( newMax  newMin )1+eαIβ1+ newMin 
其中 α \alpha α 定义输入强度范围的宽度, β \beta β 定义输入强度范围的中心强度。

图像处理软件中的自动归一化通常归一化为图像文件格式中指定的数字系统的完整动态范围。

PyTorch归一化图像

PyTorch 中的标准化是使用 torchvision.transforms.Normalize() 完成的。这用平均值和标准差对张量图像进行归一化


from PIL import Image
import matplotlib.pyplot as plt
import numpy as npimg_path = 'Koa.jpg'
img = Image.open(img_path)img_np = np.array(img)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

从结果,我们发现RGB图像的像素值范围是0到255。

使用 ToTensor() 将 PIL 图像转换为 PyTorch 张量,并绘制该张量图像的像素值。我们定义变换函数将 PIL 图像转换为 PyTorch 张量图像。

import torchvision.transforms as transforms
import matplotlib.pyplot as plttransform = transforms.Compose([transforms.ToTensor()
])img_tr = transform(img)
img_np = np.array(img_tr)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

从结果,我们发现张量图像的像素值范围从0.0到1.0。我们注意到 RBG 和张量图像的像素分布看起来相同,但像素值范围不同。

我们计算图像的平均值和标准差:

img_tr = transform(img)
mean, std = img_tr.mean([1,2]), img_tr.std([1,2])print("mean and std before normalize:")
print("Mean of the image:", mean)
print("Std of the image:", std)
标准化前的均值和标准差: 
图像的均值:tensor([0.4916, 0.4498, 0.4000]) 
图像的标准差:tensor([0.2474, 0.2362, 0.2322])

为了归一化图像,我们在这里使用上面计算的图像平均值和标准差。如果图像与 ImageNet 图像相似,我们也可以使用 ImageNet 数据集的平均值和标准差。ImageNet 的平均值和标准差为:平均值 = [0.485, 0.456, 0.406] 和标准差 = [0.229, 0.224, 0.225]。如果图像与 ImageNet 不相似(如医学图像),则始终建议计算数据集的平均值和标准差并使用它们来归一体图像。

from torchvision import transformstransform_norm = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)
])img_normalized = transform_norm(img)
img_np = np.array(img_normalized)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

我们已经用计算出的平均值和标准差对图像进行了归一化。上面的输出显示了归一化图像的像素值分布。我们可以注意到张量图像(归一化之前)和归一化图像的像素分布之间的差异。

现在可视化标准化图像:

img_normalized = transform_norm(img)
img_normalized = np.array(img_normalized)
img_normalized = img_normalized.transpose(1, 2, 0)plt.imshow(img_normalized)
plt.xticks([])
plt.yticks([])

👉参阅、更新:计算思维 | 亚图跨际

这篇关于Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144718

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1