【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法

2024-09-07 05:48

本文主要是介绍【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

孤立森林(isolation Forest)算法,2008年由刘飞、周志华等提出,算法不借助类似距离、密度等指标去描述样本与其他样本的差异,而是直接去刻画所谓的疏离程度(isolation),因此该算法简单、高效,在工业界应用较多。
在这里插入图片描述

用一个例子来说明孤立森林的思想:假设现在有一组一维数据(如下图),我们要对这组数据进行切分,目的是把点A和 B单独切分出来,先在最大,值和最小值之间随机选择一个值 X,然后按照 <X 和 >=X 可以把数据分成左右两组,在这两组数据中分别重复这个步骤,直到数据不可再分。
点B跟其他数据比较疏离,可能用很少的次数就可以把它切分出来,点 A 跟其他数据点聚在一起,可能需要更多的次数才能把它切分出来。
那么从统计意义上来说,相对聚集的点需要分割的次数较多,比较孤立的点需要的分割次数少,孤立森林就是利用分割的次数来度量一个点是聚集的(正常)还是孤立的(异常)。

下面构造一个例子 ,数据集是月工资的,单位为万,看看哪些是异常的。

在这里插入图片描述
我们用sklearn 实现,我们使用sklearn中的孤立森林,进行参数调节讲解,一般任务默认参数即可,算法API地址:

孤立森林sklearn官方api接口

1、基本用法

sklearn.ensemble.IsolationForest(*, n_estimators=100, max_samples='auto', contamination='auto', max_features=1.0, bootstrap=False, n_jobs=None, random_state=None, verbose=0, warm_start=False)

2、参数详解

n_estimators : int, optional (default=100)iTree的个数,指定该森林中生成的随机树数量,默认为100个max_samples : int or float, optional (default=”auto”)构建子树的样本数,整数为个数,小数为占全集的比例,用来训练随机数的样本数量,即子采样的大小如果设置的是一个int常数,那么就会从总样本X拉取max_samples个样本来生成一棵树iTree如果设置的是一个float浮点数,那么就会从总样本X拉取max_samples * X.shape[0]个样本,X.shape[0]表示总样本个数如果设置的是"auto",则max_samples=min(256, n_samples),n_samples即总样本的数量如果max_samples值比提供的总样本数量还大的话,所有的样本都会用来构造数,意思就是没有采样了,构造的n_estimators棵iTree使用的样本都是一样的,即所有的样本contamination : float in (0., 0.5), optional (default=0.1)取值范围为(0., 0.5),表示异常数据占给定的数据集的比例,数据集中污染的数量,其实就是训练数据中异常数据的数量,比如数据集异常数据的比例。定义该参数值的作用是在决策函数中定义阈值。如果设置为'auto',则决策函数的阈值就和论文中定义的一样max_features : int or float, optional (default=1.0)构建每个子树的特征数,整数位个数,小数为占全特征的比例,指定从总样本X中抽取来训练每棵树iTree的属性的数量,默认只使用一个属性如果设置为int整数,则抽取max_features个属性如果是float浮点数,则抽取max_features * X.shape[1]个属性bootstrap : boolean, optional (default=False)
采样是有放回还是无放回,如果为True,则各个树可放回地对训练数据进行采样。如果为False,则执行不放回的采样。n_jobs :int or None, optional (default=None)
在运行fit()和predict()函数时并行运行的作业数量。除了在joblib.parallel_backend上下文的情况下,None表示为1。设置为-1则表示使用所有可用的处理器random_state : int, RandomState instance or None, optional (default=None)每次训练的随机性如果设置为int常数,则该random_state参数值是用于随机数生成器的种子如果设置为RandomState实例,则该random_state就是一个随机数生成器如果设置为None,该随机数生成器就是使用在np.random中的RandomState实例verbose : int, optional (default=0)训练中打印日志的详细程度,数值越大越详细warm_start : bool, optional (default=False)
当设置为True时,重用上一次调用的结果去fit,添加更多的树到上一次的森林1集合中;否则就fit一整个新的森林3、属性
base_estimator_:The child estimator template used to create the collection of fitted sub-estimators.estimators_:list of ExtraTreeRegressor instances The collection of fitted sub-estimators.estimators_:features_list of ndarray The subset of drawn features for each base estimator.estimators_samples_:list of ndarray The subset of drawn samples for each base estimator.max_samples_:The actual number of samplesn_features_:DEPRECATED: Attribute n_features_ was deprecated in version 1.0 and will be removed in 1.2.n_features_in_:Number of features seen during fit.feature_names_in_:Names of features seen during fit. Defined only when X has feature names that are all strings4、方 法
fit(X[, y, sample_weight]):训练模型decision_function(X):返回平均异常分数predict(X):预测模型返回1或者-1fit_predict(X[, y]):训练-预测模型一起完成get_params([deep]):Get parameters for this estimator.score_samples(X):Opposite of the anomaly score defined in the original paper.set_params(**params):Set the parameters of this estimator.

代码实现例子:

# -*- coding: utf-8 -*-# 加载模型所需要的的包
import pandas  as pd
from sklearn.ensemble import IsolationForest
import warnings
warnings.filterwarnings('ignore')# 构造一个数据集,只包含一列数据,假如都是月薪数据,有些可能是错的
df = pd.DataFrame({'salary':[4,1,4,5,3,6,2,5,6,2,5,7,1,8,12,33,4,7,6,7,8,55]})#构建模型 ,n_estimators=100 ,构建100颗树
model = IsolationForest(n_estimators=100,max_samples='auto',contamination=float(0.1),max_features=1.0)
# 训练模型
model.fit(df[['salary']])# 预测 decision_function 可以得出 异常评分
df['scores']  = model.decision_function(df[['salary']])#  predict() 函数 可以得到模型是否异常的判断,-1为异常,1为正常
df['anomaly'] = model.predict(df[['salary']])
print(df)

运行结果:

    salary    scores  anomaly
0        4  0.212483        1
1        1  0.090735        1
2        4  0.212483        1
3        5  0.224400        1
4        3  0.163518        1
5        6  0.225034        1
6        2  0.160745        1
7        5  0.224400        1
8        6  0.225034        1
9        2  0.160745        1
10       5  0.224400        1
11       7  0.209048        1
12       1  0.090735        1
13       8  0.164438        1
14      12 -0.010082       -1
15      33 -0.115611       -1
16       4  0.212483        1
17       7  0.209048        1
18       6  0.225034        1
19       7  0.209048        1
20       8  0.164438        1
21      55 -0.186734       -1Process finished with exit code 0

我们可以看到,发现了三个异常的数据,和我们认知差不多,都是比较高的,并且异常值越大,异常分scores就越大,比如那个月薪55万的,不是变态就是数据错了。

在这里插入图片描述

这篇关于【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144233

相关文章

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Java空指针异常NullPointerException的原因与解决方案

《Java空指针异常NullPointerException的原因与解决方案》在Java开发中,NullPointerException(空指针异常)是最常见的运行时异常之一,通常发生在程序尝试访问或... 目录一、空指针异常产生的原因1. 变量未初始化2. 对象引用被显式置为null3. 方法返回null

redis在spring boot中异常退出的问题解决方案

《redis在springboot中异常退出的问题解决方案》:本文主要介绍redis在springboot中异常退出的问题解决方案,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴... 目录问题:解决 问题根源️ 解决方案1. 异步处理 + 提前ACK(关键步骤)2. 调整Redis消费者组

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

解决Java异常报错:java.nio.channels.UnresolvedAddressException问题

《解决Java异常报错:java.nio.channels.UnresolvedAddressException问题》:本文主要介绍解决Java异常报错:java.nio.channels.Unr... 目录异常含义可能出现的场景1. 错误的 IP 地址格式2. DNS 解析失败3. 未初始化的地址对象解决

python利用backoff实现异常自动重试详解

《python利用backoff实现异常自动重试详解》backoff是一个用于实现重试机制的Python库,通过指数退避或其他策略自动重试失败的操作,下面小编就来和大家详细讲讲如何利用backoff实... 目录1. backoff 库简介2. on_exception 装饰器的原理2.1 核心逻辑2.2

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常