基于 Python 的 LIF 模型:探索神经元同步与小世界网络

2024-09-07 02:12

本文主要是介绍基于 Python 的 LIF 模型:探索神经元同步与小世界网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在神经科学中,理解神经元之间的同步行为对解释大脑的功能非常重要。而泄漏积分发放(Leaky Integrate-and-Fire, LIF)模型作为一种经典的神经元模型,广泛应用于模拟神经元的膜电位变化以及脉冲发放。本篇博客将带你通过Python代码,模拟一个基于小世界网络的神经元群体,探索不同重连概率 ppp 对神经元同步性的影响。

LIF 模型的基本原理

LIF 模型基于以下膜电位更新公式:

当膜电位 VVV 超过阈值 VthV_{\text{th}}Vth​ 时,神经元会发放脉冲,随后膜电位重置为 VrestV_{\text{rest}}Vrest​。这种发放机制可以用于模拟神经元的基本行为。

代码实现

我们通过 Python 代码实现 LIF 模型,并模拟不同重连概率 ppp 下的神经元群体同步性。以下为代码的主要实现步骤。

1. 神经元类的定义

首先,我们定义了一个 LIFNeuron 类来模拟神经元的行为:

class LIFNeuron:def __init__(self, cm=1000, V_rest=-65):self.soma = h.Section(name='soma')self.soma.L = self.soma.diam = 12.6157  # 固定神经元形状self.cm = cm  # 电容self.V_rest = V_rest  # 静息电位self.V = V_rest  # 初始化膜电位

在初始化过程中,每个神经元被赋予初始的静息电位,并且其膜电位会在后续的模拟过程中动态变化。

2. 模拟突触输入与膜电位更新

接下来,我们计算每个神经元在每个时间步的膜电位变化。膜电位的变化不仅依赖于神经元自身的状态,还受到来自其他神经元的突触输入 IsynI_{\text{syn}}Isyn​ 影响:

def dvdt(v, i_synps, i_ext):return (-(v - V_rest) + i_synps + i_ext) / taufor tStep in range(len(Tt) - 1):for j in range(Nn):v_a1 = V[tStep, j]i_ext = stim_amplitude if stim_start <= T[tStep] <= stim_start + stim_duration else 0i_synps = np.random.normal(100, 200)# 计算Runge-Kutta四阶方法更新膜电位k1 = dt * (dvdt(v_a1, i_synps, i_ext) + noise_strength)k2 = dt * (dvdt(v_a1 + 0.5 * k1, i_synps, i_ext) + noise_strength)k3 = dt * (dvdt(v_a1 + 0.5 * k2, i_synps, i_ext) + noise_strength)k4 = dt * (dvdt(v_a1 + k3, i_synps, i_ext) + noise_strength)v_a2 = v_a1 + (k1 + 2 * k2 + 2 * k3 + k4) / 6if v_a2 >= V_th:spike_train[tStep, j] = 1  # 发放脉冲v_a2 = V_rest  # 重置膜电位V[tStep + 1, j] = v_a2  # 更新下一时间步的膜电位

在这段代码中,我们使用了Runge-Kutta四阶方法(RK4)来更新神经元的膜电位。这种方法相比简单的欧拉方法更为精确,能够更好地模拟神经元的动态行为。

3. 小世界网络的构建与重连概率

为了模拟神经元网络的行为,我们引入了一个基于小世界网络的模型。我们使用 networkx 库构建网络,并设置不同的重连概率 ppp 来模拟神经元之间连接的随机性。

import networkx as nx# 创建小世界网络
Nn = 100  # 神经元数量
p_values = [0, 0.1, 0.3, 0.5, 0.7, 0.9]
G = nx.watts_strogatz_graph(Nn, k=4, p=0.1)  # 构建网络,p为重连概率

随着 ppp 值的增加,网络中神经元之间的连接变得更加随机。这种随机化会影响神经元之间的同步行为。

4. 可视化膜电位与脉冲发放

为了直观展示模拟结果,我们使用 matplotlib 绘制了神经元的膜电位热图和脉冲时序图:

# 绘制膜电位热图
plt.figure(figsize=(12, 8))
plt.imshow(V.T, aspect='auto', cmap='hot', extent=[0, T_final, 0, Nn])
plt.colorbar(label='膜电位 (mV)')
plt.title(f'膜电位热图 (p={p})')
plt.xlabel('时间 (ms)')
plt.ylabel('神经元')
plt.show()# 绘制同步误差图
plt.figure()
plt.plot(p_values, sync_errors, marker='o')
plt.title('不同 p 值下的网络同步误差')
plt.xlabel('重连概率 p')
plt.ylabel('同步误差')
plt.show()

这些图形展示了不同时间步内神经元膜电位的动态变化,以及随着重连概率变化网络同步性的变化。

结果与分析

模拟结果表明,随着重连概率 ppp 的增加,神经元之间的同步误差呈现先下降后上升的趋势。在适中的重连概率下,网络能够达到较高的同步性,而过高的随机性则破坏了这种同步。以下是一些可视化结果的示例:

  • 膜电位热图:展示了神经元膜电位随时间的变化。
  • 同步误差曲线:随着重连概率的增加,同步误差先下降后上升,表明网络的随机化程度直接影响同步性。
结论

通过这次模拟,我们成功探索了基于LIF模型的小世界网络中神经元同步行为。重连概率 ppp 的变化显著影响了网络的同步性,适中的随机性有助于提高同步性。未来的研究可以引入更多复杂的神经元模型或突触机制,进一步揭示神经网络中的复杂动态现象。

这次探索不仅展示了LIF模型的强大之处,也为未来研究神经元网络中的同步现象提供了新的思路。希望通过这篇博客,大家能更好地理解神经科学中的同步现象。

这篇关于基于 Python 的 LIF 模型:探索神经元同步与小世界网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143761

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合