Spark数据介绍

2024-09-06 23:12
文章标签 数据 介绍 spark

本文主要是介绍Spark数据介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从趋势上看,DataFrame 和 Dataset 更加流行。

示例场景

  1. 数据仓库和 BI 工具集成

    • 如果你需要处理存储在数据仓库中的结构化数据,并且希望与 BI 工具集成,那么 DataFrame 和 Dataset 是首选。
  2. 机器学习流水线

    • 在构建机器学习流水线时,使用 DataFrame 和 Dataset 可以更好地管理数据流,并且可以方便地与 MLlib 集成。
  3. 实时数据处理

    • 尽管 Spark Structured Streaming 主要使用 DataFrame 和 Dataset,但在某些特定的实时数据处理场景中,仍然可能会用到 RDD。

在 Apache Spark 中,RDD (弹性分布式数据集)、DataFrame 和 Dataset 是三种不同的数据抽象,它们各有特点和适用场景。下面分别介绍这三种数据结构的区别:

1. RDD (Resilient Distributed Dataset)

特点

  • 不可变性:一旦创建后,RDD 是不可变的。这意味着你不能修改一个已存在的 RDD 的内容。
  • 容错性:RDD 通过记录数据转换的历史(血缘关系 Lineage)来自动恢复丢失的数据分区。
  • 懒加载:RDD 上的操作分为转换(Transformation)和动作(Action)。转换操作定义了如何处理数据,但并不会立即执行;动作操作则会触发整个计算过程
  • 弱类型:RDD 只提供有限的编译时类型检查,大部分类型检查是在运行时进行的。
  • API:RDD 提供了丰富的低级 API,适合复杂的自定义逻辑。

用途

  • RDD 适用于需要复杂控制流或需要细粒度控制数据处理逻辑的场景
  • RDD 也适用于需要容错性的批处理作业。

2. DataFrame

特点

  • 表格结构:DataFrame 是一个分布式的行集合,每一行都有固定的模式(Schema)。
  • 强类型:DataFrame 提供了强类型的 API,支持 SQL 查询,并且具有编译时类型检查。
  • 优化执行:DataFrame 操作可以被 Catalyst 优化器优化,以提高执行效率。
  • API:DataFrame 提供了类似于 SQL 的 API,易于使用,适合结构化数据处理。

用途

  • DataFrame 适用于处理结构化数据,特别是那些可以通过 SQL 类似查询语言来表达的数据处理任务。
  • DataFrame 也适用于需要快速开发周期的应用,因为它提供了更多的内置功能和支持。

3. Dataset

特点

  • 结合了 RDD 和 DataFrame 的优点:Dataset 是一个强类型的分布式数据集,既有 DataFrame 的结构化特性,也有类似 RDD 的 API。
  • 强类型:Dataset 支持编译时类型检查,提高了代码的安全性和可维护性。
  • 优化执行:Dataset 操作也可以被 Catalyst 优化器优化。
  • API:Dataset 提供了既像 RDD 又像 DataFrame 的 API,可以使用 SQL 语法,也可以使用函数式编程风格。

用途

  • Dataset 适用于需要结构化数据处理,同时也需要一定程度的自定义逻辑的情况。
  • Dataset 也适用于需要高性能和类型安全的应用。

总结

  • RDD适合需要高度定制化的数据处理逻辑,对容错性要求高的批处理任务
  • DataFrame适合处理结构化数据,需要快速开发周期,易于使用 SQL 查询的场景
  • Dataset:结合了 RDD 和 DataFrame 的优点,提供了类型安全和优化执行的能力,适合需要结构化数据处理同时需要一定程度自定义逻辑的情况。

这篇关于Spark数据介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1143388

相关文章

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元