ES实现百亿级数据实时分析实战案例

2024-09-06 20:08

本文主要是介绍ES实现百亿级数据实时分析实战案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

背景

我们小组前段时间接到一个需求,希望能够按照小时为单位,看到每个实验中各种特征(单个或组合)的覆盖率、正样本占比、负样本占比。我简单解释一下这三种指标的定义:

  • 覆盖率:所有样本中出现某一特征的样本的比例

  • 正样本占比:所有出现该特征的样本中,正样本的比例

  • 负样本占比:所有出现该特征的样本中,负样本的比例

光看这三个指标,大家可能会觉得这个需求很简单,无非就是一个简单的筛选、聚合而已。

如果真的这么简单,我也没必要写这篇文章单独记录了。问题的关键就在于,每小时有将近1亿的数据量,而我们需要保存7天的数据,数据总量预计超过了100亿

技术方案

在了解清楚需求后,我们小组马上对技术方案展开讨论,讨论过程中出现了3种方案:

  • 第一种:用Spark流式计算,计算每一种可能单个或组合特征的相关指标

  • 第二种:收到客户端请求后,遍历HDFS中相关数据,进行离线计算

  • 第三种:将数据按照实验+小时分索引存入ES,收到客户端请求后,实时计算返回

首先,第一种方案直接被diss,原因是一个实验一般会出现几百、上千个特征,而这些特征的组合何止几亿种,全部计算的话,可行性暂且不论,光是对资源的消耗就无法承受。

第二种方案,虽然技术上是可行的,但离线计算所需时间较长,对用户来说,体验并不理想。并且,为了计算目标1%的数据而要遍历所有数据,对资源也存在很大浪费。

第三种方案,将数据按照实验+小时分索引后,可以将每个索引包含的数据量降到1000万以下,再借助ES在查询、聚合方面高效的能力,应该可以实现秒级响应,并且用户体验也会非常好。

技术方案由此确定。

技术架构

1.用Spark从Kafka中接入原始数据,之后对数据进行解析,转换成我们的目标格式

2.将数据按照实验+小时分索引存入ES中

3.接受到用户请求后,将请求按照实验+特征+小时组合,创建多个异步任务,由这些异步任务并行从ES中过滤并聚合相关数据,得到结果

4.将异步任务的结果进行合并,返回给前端进行展示

代码实现

异步任务

// 启动并行任务final Map<String,List<Future<GetCoverageTask.Result>>> futures = Maps.newHashMap();for(String metric : metrics) { // 遍历要计算的指标final SampleRatio sampleRatio = getSampleRatio(metric);for (String exptId : expts) { // 遍历目标实验列表for (String id : features) { // 遍历要分析的特征final String name = getMetricsName(exptId, sampleRatio, id);final List<Future<GetCoverageTask.Result>> resultList = Lists.newArrayList();for (Date hour : coveredHours) { // 将时间按照小时进行拆分final String fieldName = getFieldName(isFect ? Constants.FACET_COLLECT : Constants.FEATURE_COLLECT, id);final GetCoverageTask task = new GetCoverageTask(exptId, fieldName, sampleRatio, hour);// 启动并行任务final Future<GetCoverageTask.Result> future = TaskExecutor.submit(task);resultList.add(future);}futures.put(name, resultList);}}}final QueryRes queryRes = new QueryRes();final Iterator<Map.Entry<String, List<Future<GetCoverageTask.Result>>>> it = futures.entrySet().iterator();while (it.hasNext()){// 省略结果处理流程}

指标计算

// 1\. 对文档进行聚合运行,分别得到基础文档的数量,以及目标文档数量final AggregationBuilder[] agg = getAggregationBuilder(sampleRatio, fieldName);final SearchSourceBuilder searchBuilder = new SearchSourceBuilder();searchBuilder.aggregation(agg[0]).aggregation(agg[1]).size(0);// 2\. 得到覆盖率final String indexName = getIndexName(exptId, hour);final Search search = new Search.Builder(searchBuilder.toString()).addIndex(indexName).addType(getType()).build();final SearchResult result = jestClient.execute(search);if(result.getResponseCode() != HttpUtils.STATUS_CODE_200){// 请求出错log.warn(result.getErrorMessage());return 0f;}final MetricAggregation aggregations = result.getAggregations();// 3\. 解析结果final long dividend ;if(SampleRatio.ALL == sampleRatio){dividend = aggregations.getValueCountAggregation(Constants.DIVIDEND).getValueCount();}else {dividend = aggregations.getFilterAggregation(Constants.DIVIDEND).getCount();}// 防止出现被除数为0时程序异常if(dividend <= 0){return 0f;}long divisor = aggregations.getFilterAggregation(Constants.DIVISOR).getCount();return divisor / (float)dividend;

聚合

int label = 0;final ExistsQueryBuilder existsQuery = QueryBuilders.existsQuery(fieldName);// 包含指定特征的正样本数量final BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();final List<QueryBuilder> must = boolQuery.must();// 计算样本数量TermQueryBuilder labelQuery = null;if(SampleRatio.POSITIVE == sampleRatio) {// 计算正样本数量label = 1;labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);must.add(labelQuery);}else if(SampleRatio.NEGATIVE == sampleRatio) {// 计算负样本数量labelQuery = QueryBuilders.termQuery(Constants.LABEL, label);must.add(labelQuery);}must.add(existsQuery);final ValueCountAggregationBuilder existsCountAgg = AggregationBuilders.count(sampleRatio.getField());existsCountAgg.field(fieldName);final FilterAggregationBuilder filterAgg = AggregationBuilders.filter(aggName, boolQuery);filterAgg.subAggregation(existsCountAgg);return filterAgg;
上线效果

上线后表现完全满足预期,平均请求耗时在3秒左右,用户体验良好。感谢各位小伙伴的辛苦付出~~

下图是ES中部分索引的信息:

突破性能瓶颈!ElasticSearch百亿级数据检索优化案例

ElasticSearch读写底层原理及性能调优

一文俯瞰Elasticsearch核心原理

文章不错?点个【在看】吧! ????

这篇关于ES实现百亿级数据实时分析实战案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1142996

相关文章

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal

C#使用MQTTnet实现服务端与客户端的通讯的示例

《C#使用MQTTnet实现服务端与客户端的通讯的示例》本文主要介绍了C#使用MQTTnet实现服务端与客户端的通讯的示例,包括协议特性、连接管理、QoS机制和安全策略,具有一定的参考价值,感兴趣的可... 目录一、MQTT 协议简介二、MQTT 协议核心特性三、MQTTNET 库的核心功能四、服务端(BR

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

C#继承之里氏替换原则分析

《C#继承之里氏替换原则分析》:本文主要介绍C#继承之里氏替换原则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#里氏替换原则一.概念二.语法表现三.类型检查与转换总结C#里氏替换原则一.概念里氏替换原则是面向对象设计的基本原则之一:核心思想:所有引py

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

Java 压缩包解压实现代码

《Java压缩包解压实现代码》Java标准库(JavaSE)提供了对ZIP格式的原生支持,通过java.util.zip包中的类来实现压缩和解压功能,本文将重点介绍如何使用Java来解压ZIP或RA... 目录一、解压压缩包1.zip解压代码实现:2.rar解压代码实现:3.调用解压方法:二、注意事项三、总

NGINX 配置内网访问的实现步骤

《NGINX配置内网访问的实现步骤》本文主要介绍了NGINX配置内网访问的实现步骤,Nginx的geo模块限制域名访问权限,仅允许内网/办公室IP访问,具有一定的参考价值,感兴趣的可以了解一下... 目录需求1. geo 模块配置2. 访问控制判断3. 错误页面配置4. 一个完整的配置参考文档需求我们有一