gmapping 实现过程和数据走向

2024-09-06 04:12

本文主要是介绍gmapping 实现过程和数据走向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全局地图坐标系gmap_pose数据处理过程

初始化Map位姿

初始化地图坐标map:map是不会变化的,是gmapping 程序启动的位置姿态就是地图的原地

  // 地图原点设置为激光中心位置 启动程序时,设置原点GMapping::OrientedPoint gmap_pose(0, 0, 0);

激光初始化里程计的位姿

  // 获取初始姿态GMapping::OrientedPoint initialPose;if(!getOdomPose(initialPose, scan.header.stamp)){ROS_WARN("Unable to determine inital pose of laser! Starting point will be set to zero.");initialPose = GMapping::OrientedPoint(0.0, 0.0, 0.0);}

获取当前激光雷达时间下的odom->lase的tf来得到里程计的位姿
通过tf变换来计算里程计的位姿

/*** @brief 尝试获取指定时间下的机器人里程计位置* * @param gmap_pose 输出参数,用于存储计算出的里程计位置* @param t 指定的时间点* * @return 返回是否成功获取里程计位置*/
bool SlamGMapping::getOdomPose(GMapping::OrientedPoint& gmap_pose, const ros::Time& t)
{// 获取中心激光雷达在指定时间的位置centered_laser_pose_.stamp_ = t;// 使用TF变换获取激光雷达中心位置对应的里程计坐标系下的位置tf::Stamped<tf::Transform> odom_pose;try{tf_.transformPose(odom_frame_, centered_laser_pose_, odom_pose);}catch(tf::TransformException e){ROS_WARN("计算里程计位置失败,跳过扫描 (%s)", e.what());return false;}// 提取里程计坐标系下位置的姿态角double yaw = tf::getYaw(odom_pose.getRotation());// 构造并返回里程计位置gmap_pose = GMapping::OrientedPoint(odom_pose.getOrigin().x(),odom_pose.getOrigin().y(),yaw);return true;
}

传递位姿数据setPose—>getPose()

后面通过getPose来读取gmap_pose的位姿

  // 设置激光雷达扫描的姿态reading.setPose(gmap_pose);

gmap_pose数据保存和传递

// 防止多次定义
#ifndef ODOMETRYREADING_H
#define ODOMETRYREADING_H// 引入基本的传感器读数类和点类
#include <string.h>
#include <sensor/sensor_base/sensorreading.h>
#include <utils/point.h>
// 引入里程计传感器类
#include "odometrysensor.h"// 命名空间GMapping,用于地图构建相关功能
namespace GMapping{// 里程计读数类,继承自SensorReading
class OdometryReading: public SensorReading{public:// 构造函数,初始化里程计读数// 参数odo: 里程计传感器对象的指针// 参数time: 读数的时间戳,默认为0OdometryReading(const OdometrySensor* odo, double time=0);// 获取当前姿态inline const OrientedPoint& getPose() const {return m_pose;}// 获取当前速度inline const OrientedPoint& getSpeed() const {return m_speed;}// 获取当前加速度inline const OrientedPoint& getAcceleration() const {return m_acceleration;}// 设置当前姿态inline void setPose(const OrientedPoint& pose) {m_pose=pose;}// 设置当前速度inline void setSpeed(const OrientedPoint& speed) {m_speed=speed;}// 设置当前加速度inline void setAcceleration(const OrientedPoint& acceleration) {m_acceleration=acceleration;}protected:// 当前姿态OrientedPoint m_pose;// 当前速度OrientedPoint m_speed;// 当前加速度OrientedPoint m_acceleration;
};};
// 结束防止多次定义
#endif

激光雷达数据处理过程

laserCallback----->initMapper----->addScan---->updataMap

1. 数据预处理

  • 激光雷达数据获取:从激光雷达传感器获取原始的扫描数据。
  • 数据滤波:对原始数据进行滤波处理,去除噪声和异常点。

2. 粒子滤波初始化

  • 粒子初始化:在初始时刻,生成一组粒子(即机器人的可能位置),每个粒子代表机器人可能的一个状态。
  • 权重分配:为每个粒子分配初始权重,通常所有粒子的权重相等。

3. 运动模型更新

  • 预测步骤:根据机器人的运动模型(如里程计数据),预测每个粒子在下一个时刻的位置。
  • 粒子扩散:由于运动模型存在误差,粒子会在预测位置周围进行一定程度的扩散,以模拟不确定性。

4. 观测模型更新

  • 激光数据匹配:将当前时刻的激光雷达数据与地图(由粒子表示)进行匹配,计算每个粒子的似然度。
  • 权重更新:根据激光数据的匹配结果,更新每个粒子的权重。匹配效果好的粒子权重增加,匹配效果差的粒子权重减少。

5. 重采样

  • 粒子重采样:根据更新后的粒子权重,进行重采样。权重高的粒子被保留或复制,权重低的粒子被淘汰,以确保粒子集能够更好地代表机器人的真实状态。

6. 地图更新

  • 地图构建:根据重采样后的粒子集,更新地图。每个粒子对应一个局部地图,通过融合所有粒子的局部地图,得到全局地图。
  • 地图优化:对地图进行优化,去除噪声点,平滑地图边界。

7. 循环迭代

  • 时间更新:重复上述步骤,随着时间的推移,不断更新粒子集和地图,直到完成整个环境的建图。

8. 结果输出

  • 定位结果:输出机器人的最终位置估计。
  • 地图输出:输出最终构建的地图。

这篇关于gmapping 实现过程和数据走向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140969

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函