【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营

本文主要是介绍【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

《苹果书》第一章的内容包括
机器学习基础 -> 线性模型 -> 分段线性模型 -> 引入深度学习

这一篇章我们继续后续内容 ~
其中涉及到“激活函数”的作用理解:
除了 开源项目 - 跟李宏毅学深度学习(入门) 之外,
还有 @3Blue1Brown 的神经网络 和 @StatQuest 的深度学习 视频内容辅助。

🍎 🍎

系列文章导航

【深度学习详解】Task1 机器学习基础-线性模型 Datawhale X 李宏毅苹果书 AI夏令营
【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营
【深度学习详解】Task3 实践方法论-分类任务实践 Datawhale X 李宏毅苹果书 AI夏令营

本篇目录导航

  • 前言
      • 系列文章导航
  • 分段线性模型 - 机器学习的三个步骤
    • Step 1:写出目标函数
      • 激活函数
      • 模型计算过程
      • 引入“深度学习”概念
    • Step 2:定义 loss 损失函数
    • Step 3:通过优化器调整超参数 更新参数
      • 参数
      • 超参数
      • 常见的优化器
  • Read more

分段线性模型 - 机器学习的三个步骤

Step 1:写出目标函数

激活函数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

模型计算过程

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

选用 Sigmoid 激活函数 逼近 Hard Sigmoid

在这里插入图片描述

只是考虑一个训练数据

  • i "分段线性模型"的段数 <=> “Sigmoid 函数”的个数

xxx

同时考虑多个训练数据

  • (得到更有灵活性 flexibility 的函数)
    i "分段线性模型"的线段数目 <=> “Sigmoid 函数”的个数
    j "分段线性模型"的训练数据个数

xxx

  • r 代表:“分段线性模型”小括号里面的式子

xxx

  • α 代表:r 的 Sigmoid 函数

xxx

  • y 代表:分段线性模型

在这里插入图片描述

选用 ReLU 激活函数 逼近 Hard Sigmoid

只是考虑一个训练数据

  • 两个 变形的ReLU 合成 一个 Hard Sigmoid

tips:
这里的ReLU函数都不是“标准的”ReLU函数,
因为它们都是变形过的,即
① 通过对自变量x加减b:
实现函数左右平移,
② 通过对ReLU函数乘上c:
改变斜线陡峭程度
还有可能将斜线正负翻转 。
在这里插入图片描述
我们可代入具体值具体例子理解:
上面的变形Relu斜线延申y值分别是
11、12、13……
下面的变形Relu斜线对应y值分别是
-1、-2、-3……
那么用这两个Relu斜线部分合成就是
Hard Sigmoid 函数第三段(平的)
即:11-1 =12-2 =13-3 =……=10

可以观看这个视频可视化理解
@StatQuest 深度学习:【官方双语】一个例子彻底理解ReLU激活函数
该视频的例子:两个变形的ReLU
-> 分段线性模型
《苹果书》:两个变形的ReLU
-> Hard Sigmoid
-> 分段线性模型

同时考虑多个训练数据

  • (得到更有灵活性 flexibility 的函数)
    2i "分段线性模型"的线段数目 <=> “ReLU 函数”的个数*2
    j "分段线性模型"的训练数据个数

xxx

嵌套多层 ReLU 激活函数 逼近 Hard Sigmoid

只是考虑一个训练数据

同时考虑多个训练数据

  • (得到更有灵活性 flexibility 的函数)
    2i "分段线性模型"的线段数目 <=> “ReLU 函数”的个数*2
    j "分段线性模型"的训练数据个数

在这里插入图片描述

引入“深度学习”概念

引入“深度学习”概念

(旧说法)

  • Neuron 神经元
    Neural Network 神经网络

(新说法)

  • hidden layer 隐藏层
    Deep Learning 深度学习

在这里插入图片描述

Step 2:定义 loss 损失函数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

Step 3:通过优化器调整超参数 更新参数

参数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

参数

所有未知参数“拼”成一个向量 θ

  • σ 激活函数
    w weight 权重参数
    b bias 偏置参数(修正)
    c 常数参数
    b 常数参数

在这里插入图片描述

超参数

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

常见的优化器

鼠标右键 -> 在新标签页中打开图像
在这里插入图片描述

梯度下降的步骤

定义代价函数

  • 代价函数——误差表面(error surface):
    尝试不同的权重参数,计算它的损失 L

在这里插入图片描述

选取初始点

  • 首先在代价函数上随机选取一个初始点。

更新 参数 θ
(以权重参数 w 为例)

  • 步伐大小
    接下来计算在这个点上,权重参数 w 对损失 L 的微分
    计算梯度,即代价函数的导数、微分、陡峭程度)。
    调整的步伐大小是 学习率 η 乘上微分的结果。

  • 步伐方向
    计算在这一个点上的代价函数的切线斜率
    如果斜率大于0,则将w调小;反之,则将w调大。

  • 更新 参数 θ

上角标:迭代更新的次数
下角标:未知参数的序数在这里插入图片描述

  • 一个回合(epoch)内
    把 N 笔数据(即需要迭代更新的总次数)
    随机分成一个一个的批次(batch)

相当于分担了需要迭代更新的总次数:
1个epoch的更新次数 = N / B
N 需要迭代更新的总次数
B 批次的大小在这里插入图片描述

反复迭代计算

  • 输入更新后的参数 θ ,
    再次计算微分,再次更新参数,
    反复迭代更新下去找到代价函数最低点为止。
    (或者是直到不想做为止)

Read more

  • 李宏毅深度学习教程 LeeDL-Tutorial(苹果书)
    https://github.com/datawhalechina/leedl-tutorial
    李宏毅《机器学习/深度学习》2021课程(视频教程 24 h 46 min)
    https://www.bilibili.com/video/BV1JA411c7VT/

  • @3Blue1Brown Topics: Neural Networks
    https://www.3blue1brown.com/topics/neural-networks

  • @StatQuest 深度学习
    【官方双语】一个例子彻底理解ReLU激活函数
    https://www.bilibili.com/video/BV15x4y1U7T3/

这篇关于【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139873

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class