通义千问Qwen 2大模型的预训练和后训练范式解析

2024-09-05 15:12

本文主要是介绍通义千问Qwen 2大模型的预训练和后训练范式解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLMs,也就是大型语言模型,现在已经发展得挺厉害的。记得最开始的时候,我们只有GPT这样的模型,但现在,我们有了一些更复杂的、开放权重的模型。以前,训练这些模型的时候,我们主要就是做预训练,但现在不一样了,我们还会加上后训练这个阶段。

图片

咱们今天就以通义千问Qwen 2这个模型为例,来好好分析一下Qwen 2的预训练和后训练都是怎么搞的。它在大型语言模型界里算是挺能打的。不过,虽然它很强,但可能因为一些原因,它还没有像国外Meta AI、Microsoft和Google的那些模型那么火。

Qwen 2模型基本情况

Qwen 2有五种不同的规格,就像手机有不同内存大小一样。它有四个常规的模型,参数量分别是5亿、15亿、70亿和720亿。参数就像是模型的大脑细胞,参数越多,模型能处理的信息就越多。除了这些,还有一个专家混合模型,这个模型有57亿参数,其中有14亿是同时工作的。

Qwen 2的一个亮点是它在30种语言上都表现得很好,这就像是个多语言的天才。它还有一个特别大的词汇表,有151,642个标记(tokens)。这比很多其他模型的词汇表都要大,比如Llama 2有32k个标记,Llama 3.1有128k个标记。词汇表越大,模型处理信息的时候就越灵活,尤其是在处理多种语言的时候。

再来看看Qwen 2和其他一些模型在MMLU基准测试上的分数。MMLU是个多项选择题的测试,虽然它有局限性,但大家还是挺喜欢用它来衡量模型的表现的。咱们稍后会详细看看这些分数。

图片

最新开放权重模型的MMLU基准测试分数(较高的值更好)

Qwen 2的预训练过程

Qwen 2团队在7万亿个训练标记上训练了15亿、70亿和720亿参数的模型。这个训练量听起来是不是挺吓人的?对比一下,Llama 2模型只用了2万亿个标记(tokens)来训练,而Llama 3.1模型则用了15万亿个标记。

但是,Qwen 2的5亿参数模型训练得更狠,用了12万亿个标记。研究人员没在更大的数据集上训练其他模型,因为他们发现这样训练效果提升不大,而且计算成本太高,不划算。

在预训练的时候,他们特别注重提高数据质量,比如过滤掉那些质量不高的数据,还有增加数据的多样性。这都是为了确保模型能学到更多有用的东西。

他们还用了一种挺聪明的方法,就是用Qwen模型自己生成一些预训练数据。这样可以让模型更好地理解上下文,以及如何根据指令来做出反应。

训练过程是分两个阶段的。先是常规的预训练,然后是长上下文训练。长上下文训练是在预训练快结束的时候进行的,用的是高质量的、长的数据。这个过程可以把模型处理上下文的能力从4,096个标记提高到32,768个标记,这就像是让模型的记忆力变得更强了。

图片

Qwen 2预训练技术,“持续预训练”指的是两阶段预训练,研究人员从常规预训练开始,然后进行了长上下文持续预训练

Qwen 2的后训练过程

Qwen 2团队用了一种流行的两阶段后训练方法。

第一阶段是监督指令微调(SFT),他们在500,000个示例上进行了2个周期的训练。这个阶段的目标是让模型在特定场景下给出更准确的回答。

图片

 

第二阶段,他们用直接偏好优化(DPO)来让模型更符合人类的偏好。SFT加上DPO的方法因为操作简便,比其他方法(比如带PPO的RLHF)更受欢迎。更多关于DPO的详情,可参见:《LLM 直接偏好优化(DPO)的一些研究》。关于PPO与DPO的对比,可以参见:《大模型对齐:DPO vs PPO》

对齐阶段也分两步走。首先是在现有的数据集上用DPO进行离线训练。然后是在线阶段,模型在训练时生成多个回答,奖励模型在训练过程中实时选择最优的回答。这个过程也叫做“拒绝采样”。

在构建数据集时,他们用了现有的语料库,并且加上了人工标注,来确定SFT的目标回答,以及识别DPO需要的偏好和拒绝回答。研究人员还自己合成了一些人工标注的数据。

此外,团队还用LLM生成了专门针对“高质量文学数据”的问答对,这样就能创建出用于训练的高质量Q&A对。这样可以让模型在处理文学类问题时表现得更好。

图片

Qwen 2后训练技术

现在我们来总结一下,其实Qwen 2这个模型挺有两把刷子的。它和之前的Qwen模型一样,在2023年12月的NeurIPS LLM效率挑战赛上,很多获胜的方法都用了Qwen模型。

说到Qwen 2的训练流程,一个亮点就是他们用合成数据来预训练和后训练。这就像是用模型自己生成的练习题来提高自己的能力。

另外,他们特别注重数据集的质量,而不是一味地追求数据量。这意味着,他们更看重数据的质量而不是数量。在训练模型的时候,他们认为,数据不仅要多,更要精,只有高质量的数据才能帮助模型更好地学习。

所以,Qwen 2的训练团队在这方面做得挺到位的,他们知道怎么用有限的资源来达到最好的效果。这种注重质量的训练方法,值得其他模型训练团队学习。

这篇关于通义千问Qwen 2大模型的预训练和后训练范式解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139313

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

99%的人都选错了! 路由器WiFi双频合一还是分开好的专业解析与适用场景探讨

《99%的人都选错了!路由器WiFi双频合一还是分开好的专业解析与适用场景探讨》关于双频路由器的“双频合一”与“分开使用”两种模式,用户往往存在诸多疑问,本文将从多个维度深入探讨这两种模式的优缺点,... 在如今“没有WiFi就等于与世隔绝”的时代,越来越多家庭、办公室都开始配置双频无线路由器。但你有没有注