通义千问Qwen 2大模型的预训练和后训练范式解析

2024-09-05 15:12

本文主要是介绍通义千问Qwen 2大模型的预训练和后训练范式解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLMs,也就是大型语言模型,现在已经发展得挺厉害的。记得最开始的时候,我们只有GPT这样的模型,但现在,我们有了一些更复杂的、开放权重的模型。以前,训练这些模型的时候,我们主要就是做预训练,但现在不一样了,我们还会加上后训练这个阶段。

图片

咱们今天就以通义千问Qwen 2这个模型为例,来好好分析一下Qwen 2的预训练和后训练都是怎么搞的。它在大型语言模型界里算是挺能打的。不过,虽然它很强,但可能因为一些原因,它还没有像国外Meta AI、Microsoft和Google的那些模型那么火。

Qwen 2模型基本情况

Qwen 2有五种不同的规格,就像手机有不同内存大小一样。它有四个常规的模型,参数量分别是5亿、15亿、70亿和720亿。参数就像是模型的大脑细胞,参数越多,模型能处理的信息就越多。除了这些,还有一个专家混合模型,这个模型有57亿参数,其中有14亿是同时工作的。

Qwen 2的一个亮点是它在30种语言上都表现得很好,这就像是个多语言的天才。它还有一个特别大的词汇表,有151,642个标记(tokens)。这比很多其他模型的词汇表都要大,比如Llama 2有32k个标记,Llama 3.1有128k个标记。词汇表越大,模型处理信息的时候就越灵活,尤其是在处理多种语言的时候。

再来看看Qwen 2和其他一些模型在MMLU基准测试上的分数。MMLU是个多项选择题的测试,虽然它有局限性,但大家还是挺喜欢用它来衡量模型的表现的。咱们稍后会详细看看这些分数。

图片

最新开放权重模型的MMLU基准测试分数(较高的值更好)

Qwen 2的预训练过程

Qwen 2团队在7万亿个训练标记上训练了15亿、70亿和720亿参数的模型。这个训练量听起来是不是挺吓人的?对比一下,Llama 2模型只用了2万亿个标记(tokens)来训练,而Llama 3.1模型则用了15万亿个标记。

但是,Qwen 2的5亿参数模型训练得更狠,用了12万亿个标记。研究人员没在更大的数据集上训练其他模型,因为他们发现这样训练效果提升不大,而且计算成本太高,不划算。

在预训练的时候,他们特别注重提高数据质量,比如过滤掉那些质量不高的数据,还有增加数据的多样性。这都是为了确保模型能学到更多有用的东西。

他们还用了一种挺聪明的方法,就是用Qwen模型自己生成一些预训练数据。这样可以让模型更好地理解上下文,以及如何根据指令来做出反应。

训练过程是分两个阶段的。先是常规的预训练,然后是长上下文训练。长上下文训练是在预训练快结束的时候进行的,用的是高质量的、长的数据。这个过程可以把模型处理上下文的能力从4,096个标记提高到32,768个标记,这就像是让模型的记忆力变得更强了。

图片

Qwen 2预训练技术,“持续预训练”指的是两阶段预训练,研究人员从常规预训练开始,然后进行了长上下文持续预训练

Qwen 2的后训练过程

Qwen 2团队用了一种流行的两阶段后训练方法。

第一阶段是监督指令微调(SFT),他们在500,000个示例上进行了2个周期的训练。这个阶段的目标是让模型在特定场景下给出更准确的回答。

图片

 

第二阶段,他们用直接偏好优化(DPO)来让模型更符合人类的偏好。SFT加上DPO的方法因为操作简便,比其他方法(比如带PPO的RLHF)更受欢迎。更多关于DPO的详情,可参见:《LLM 直接偏好优化(DPO)的一些研究》。关于PPO与DPO的对比,可以参见:《大模型对齐:DPO vs PPO》

对齐阶段也分两步走。首先是在现有的数据集上用DPO进行离线训练。然后是在线阶段,模型在训练时生成多个回答,奖励模型在训练过程中实时选择最优的回答。这个过程也叫做“拒绝采样”。

在构建数据集时,他们用了现有的语料库,并且加上了人工标注,来确定SFT的目标回答,以及识别DPO需要的偏好和拒绝回答。研究人员还自己合成了一些人工标注的数据。

此外,团队还用LLM生成了专门针对“高质量文学数据”的问答对,这样就能创建出用于训练的高质量Q&A对。这样可以让模型在处理文学类问题时表现得更好。

图片

Qwen 2后训练技术

现在我们来总结一下,其实Qwen 2这个模型挺有两把刷子的。它和之前的Qwen模型一样,在2023年12月的NeurIPS LLM效率挑战赛上,很多获胜的方法都用了Qwen模型。

说到Qwen 2的训练流程,一个亮点就是他们用合成数据来预训练和后训练。这就像是用模型自己生成的练习题来提高自己的能力。

另外,他们特别注重数据集的质量,而不是一味地追求数据量。这意味着,他们更看重数据的质量而不是数量。在训练模型的时候,他们认为,数据不仅要多,更要精,只有高质量的数据才能帮助模型更好地学习。

所以,Qwen 2的训练团队在这方面做得挺到位的,他们知道怎么用有限的资源来达到最好的效果。这种注重质量的训练方法,值得其他模型训练团队学习。

这篇关于通义千问Qwen 2大模型的预训练和后训练范式解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139313

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二