《OpenCV计算机视觉》—— 模板匹配

2024-09-05 13:52

本文主要是介绍《OpenCV计算机视觉》—— 模板匹配,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、模板匹配简单介绍
  • 二、三个主要函数的介绍
    • 1.执行模板匹配函数-cv2.matchTemplate()
    • 2.查找最佳匹配函数-cv2.minMaxLoc()
    • 3.在原图上绘制匹配区域函数-cv2.rectangle()
  • 三、代码实现

一、模板匹配简单介绍

  • 在Python中,模板匹配是一种在图像中查找与给定模板最相似区域的技术。

  • 模板匹配的基本步骤包括:

    • 1.加载图像和模板:首先,你需要加载你想要搜索的图像(通常称为“原图”)和你想要匹配的模板图像。模板图像应该是原图中的一个较小部分。
    • 2.执行模板匹配:使用OpenCV的cv2.matchTemplate()函数在原图上滑动模板,并计算每个位置的匹配度。这个函数会返回一个矩阵,其中每个元素表示模板在原图对应位置上的匹配程度。
    • 3.查找最佳匹配:使用cv2.minMaxLoc()函数在匹配度矩阵中找到最大值(或最小值,取决于你使用的匹配方法)及其位置。这个位置就是模板在原图中最佳匹配的位置。
    • 4.在原图上绘制匹配区域:为了可视化结果,你可以在原图上绘制一个矩形来标记匹配到的区域。

二、三个主要函数的介绍

1.执行模板匹配函数-cv2.matchTemplate()

  • result = cv2.matchTemplate(image, template, method, mask=None)
  • 参数说明:
    • image:要在其中搜索模板的原图像。
    • template:要在原图中搜索的模板图像。它应该比原图小。
    • method:用于比较模板和原图的区域的匹配方法,OpenCV 提供了几种不同的方法:
      • TM_SQDIFF :平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。
      • TM_CCORR :相关匹配法:该方法采用乘法作;数值越大表明匹配程度越好。
      • TM_CCOEFF :相关系数匹配法:数值越大表明匹配程度越好。
      • TM_SQDIFF_NORMED :归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。
      • TM_CCORR_NORMED :归一化相关匹配法,数值越大表明匹配程度越好。
      • TM_CCOEFF_NORMED :归一化相关系数匹配法,数值越大表明匹配程度越好。
  • 返回值 result 是一个矩阵,其大小取决于原图和模板的大小以及使用的匹配方法。矩阵中的每个元素都表示模板在原图对应位置上的匹配程度。对于某些方法(如平方差匹配),值越小表示匹配程度越高;而对于其他方法(如相关匹配),值越大表示匹配程度越高。

2.查找最佳匹配函数-cv2.minMaxLoc()

  • minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(src, mask=None)

  • 参数说明:

    • src:输入的二维数组(如灰度图像或匹配结果矩阵)。
    • mask:一个与 src 相同大小的掩码图像,用于指定 src 中哪些区域应该被考虑(通常不用)。
  • 返回值:

    • minVal:数组中的最小值。
    • maxVal:数组中的最大值。
    • minLoc:最小值的坐标(一个二元组,(x, y))。
    • maxLoc:最大值的坐标(一个二元组,(x, y))。

3.在原图上绘制匹配区域函数-cv2.rectangle()

  • cv2.rectangle(img, pt1, pt2, color, thickness=None, lineType=None, shift=None)

  • 参数说明:

    • img:要在其上绘制矩形的图像。这应该是一个单通道(灰度)图像或三通道(彩色)图像。
    • pt1:矩形的一个角的坐标,这是一个二元组(tuple),格式为 (x, y)。
    • pt2:矩形对角线上的另一个角的坐标,也是一个二元组,格式为 (x, y)。注意,这个对角线上的点不需要是矩形的右下角或右上角,它只需要与 pt1 形成对角线即可。
    • color:矩形的颜色。对于灰度图像,这是一个介于0(黑色)和255(白色)之间的标量。对于彩色图像,这是一个三元组,分别代表蓝色、绿色和红色的强度,值的范围也是从0到255。
    • thickness:线条的粗细(可选)。如果设置为 -1,则填充矩形。默认值是 1。
    • lineType:线条的类型(可选)。例如,cv2.LINE_8 表示8连接线,cv2.LINE_AA 表示抗锯齿线。如果未指定,则默认为 cv2.LINE_8。
    • shift:坐标点和线条粗细的小数位数(可选)。这个参数通常保持为默认值 0。
  • 返回绘制好的图片

三、代码实现

import cv2# 读取原图和标签图
kele = cv2.imread('kele.png')
template = cv2.imread('template.png')
# 显示原图和标签图
cv2.imshow('kele', kele)
cv2.imshow('template', template)# 进行模板匹配
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)  # 返回匹配结果的矩阵# 查找最佳匹配
# cv2.minMaxLoc可以获取矩阵中的最小值和最大值,以及最小值坐标和最大值坐标
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 最佳匹配位置(数组)中的:最小值、最大值、最小值坐标、最大值坐标
top_left = max_loc  # 左上角点的坐标就是最大值位置的坐标
h, w = template.shape[:2]  # 获取标签图的高和宽
bottom_right = (top_left[0] + w, top_left[1] + h)  # 右下角点的坐标
# 绘制矩形
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 255, 0), 2)# 显示绘制后的原图
cv2.imshow('kele_template', kele_template)# 等待任意键按下后关闭所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 结果如下
    在这里插入图片描述

这篇关于《OpenCV计算机视觉》—— 模板匹配的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139143

相关文章

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y