基于Python的机器学习系列(25):使用PyTorch处理数据集

2024-09-05 05:36

本文主要是介绍基于Python的机器学习系列(25):使用PyTorch处理数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在使用PyTorch进行深度学习之前,数据处理是关键的一步。本篇将介绍如何使用PyTorch处理数据集,特别是如何加载和分割数据集。

从文件加载数据

        首先,我们可以使用pandas库读取CSV文件,并将数据转换为PyTorch张量。以下是一个示例:

import pandas as pddf = pd.read_csv('data/iris.csv')
df.head()  # 显示数据的前几行

        该示例加载了著名的Iris数据集,该数据集包含150个样本,每个样本有4个特征和一个标签。特征包括花萼长度、花萼宽度、花瓣长度和花瓣宽度,标签则是三个Iris物种的名称。

使用经典方法构建训练/测试数据

        在介绍PyTorch的DatasetDataLoader类之前,我们先看一下如何使用sklearn库进行训练和测试数据的分割:

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoderle = LabelEncoder()df = pd.read_csv('data/iris.csv')
X = df.drop(['Id', 'Species'], axis=1).values
y = le.fit_transform(df['Species'].values)
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=33)X_train = torch.FloatTensor(train_X)
X_test  = torch.FloatTensor(test_X)
y_train = torch.LongTensor(train_y).reshape(-1, 1)
y_test  = torch.LongTensor(test_y).reshape(-1, 1)print(f'Training size: {len(y_train)}')
labels, counts = y_train.unique(return_counts=True)
print(f'Labels: {labels}\nCounts: {counts}')

        在这个示例中,我们首先使用LabelEncoder对标签进行编码,然后使用train_test_split将数据分割为训练集和测试集。最后,将这些数据转换为PyTorch的张量,并检查训练数据的标签分布。

使用PyTorch的DatasetDataLoader

        为了更高效地处理数据,PyTorch提供了DatasetDataLoader类,这些工具可以简化数据加载和批处理过程。在接下来的章节中,我们将深入探讨如何使用这些类来管理数据集。

总结

        本篇介绍了如何从文件中加载数据,并使用经典方法进行数据分割。掌握这些基本步骤是使用PyTorch进行深度学习的前提。接下来,我们将进一步探讨PyTorch中的Gradients。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(25):使用PyTorch处理数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138090

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是