k近邻(kNN)算法的Python实现(基于欧氏距离)

2024-09-04 18:32

本文主要是介绍k近邻(kNN)算法的Python实现(基于欧氏距离),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

k近邻算法是机器学习中原理最简单的算法之一,其思想为:给定测试样本,计算出距离其最近的k个训练样本,将这k个样本中出现类别最多的标记作为该测试样本的预测标记。
k近邻算法虽然原理简单,但是其泛华错误率却不超过贝叶斯最有分类器错误率的两倍。所以实际应用中,k近邻算法是一个“性价比”很高的分类工具。
基于欧式距离,用Python3.5实现kNN算法:

主程序:

from numpy import*
import operatordef myED(testdata,traindata):""" 计算欧式距离,要求测试样本和训练样本以array([ [],[],...[] ])的形式组织,每行表示一个样本,一列表示一个属性"""size_train=traindata.shape[0] # 训练样本量大小size_test=testdata.shape[0] # 测试样本大小XX=traindata**2sumXX=XX.sum(axis=1) # 行平方和YY=testdata**2sumYY=YY.sum(axis=1) # 行平方和Xpw2_plus_Ypw2=tile(mat(sumXX).T,[1,size_test])+\tile(mat(sumYY),[size_train,1])EDsq=Xpw2_plus_Ypw2-2*(mat(traindata)*mat(testdata).T) # 欧式距离平方distances=array(EDsq)**0.5 #欧式距离return distancesdef mykNN(testdata,traindata,labels,k):""" kNN算法主函数,labels组织成列表形式 """size_test=testdata.shape[0]D=myED(testdata,traindata)Dsortindex=D.argsort(axis=0) # 距离排序,提取序号nearest_k=Dsortindex[0:k,:] # 提取最近k个距离的样本序号label_nearest_k=array(labels)[nearest_k] # 提取最近k个距离样本的标签    label_test=[]if k==1:label_test=label_nearest_kelse:for smp in range(size_test):classcount={}labelset=set(label_nearest_k[:,smp]) # k个近邻样本的标签集合for label in labelset:classcount[label]=list(label_nearest_k[:,smp]).count(label)# 遍历k个近邻样本的标签,并计数,并以字典保存标签和计数结果sortedclasscount=sorted(classcount.items(),\key=operator.itemgetter(1),reverse=True) # 按照计数结果排序label_test.append(sortedclasscount[0][0]) # 提取出现最多的标签return label_test,D

示例:

# 以下示例数据摘自周志华《机器学习》P202表9.1
labels=[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
traindata=array([[0.6970,0.4600],[0.7740,0.3760],[0.6340,0.2640],\
[0.6080,0.3180],[0.5560,0.2150],[0.4030,0.2370],[0.4810,0.1490],\
[0.4370,0.2110],[0.6660,0.0910],[0.2430,0.2670],[0.2450,0.0570],\
[0.3430,0.0990],[0.6390,0.1610],[0.6570,0.1980],[0.3600,0.3700],\
[0.5930,0.0420],[0.7190,0.1030]])
testdata=array([[0.3590,0.1880],[0.3390,0.2410],[0.2820,0.2570],\
[0.7480,0.2320],[0.7140,0.3460],[0.4830,0.3120],[0.4780,0.4370],\
[0.5250,0.3690],[0.7510,0.4890],[0.5320,0.4720],[0.4730,0.3760],\
[0.7250,0.4450],[0.4460,0.4590]])
k=5label_test,distances=mykNN(testdata,traindata,labels,k)
print('\n')
print(label_test)

示例结果:

>>[1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]

这篇关于k近邻(kNN)算法的Python实现(基于欧氏距离)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1136692

相关文章

React 记忆缓存的三种方法实现

《React记忆缓存的三种方法实现》本文主要介绍了React记忆缓存的三种方法实现,包含React.memo、useMemo、useCallback,用于避免不必要的组件重渲染和计算,感兴趣的可以... 目录1. React.memo2. useMemo3. useCallback使用场景与注意事项在 Re

python中getsizeof和asizeof的区别小结

《python中getsizeof和asizeof的区别小结》本文详细的介绍了getsizeof和asizeof的区别,这两个函数都用于获取对象的内存占用大小,它们来自不同的库,下面就来详细的介绍一下... 目录sys.getsizeof (python 内置)pympler.asizeof.asizeof

Nginx实现端口映射的示例代码

《Nginx实现端口映射的示例代码》本文主要介绍了Nginx实现端口映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 找到nginx的部署路径2. 备份原来的配置文件3. 编辑nginx.conf文件4. 在

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv