【Python】数据可视化之核密度

2024-09-04 14:52

本文主要是介绍【Python】数据可视化之核密度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KDEPlot(Kernel Density Estimate Plot,核密度估计图)是seaborn库中一个用于数据可视化的函数,它基于核密度估计(KDE)这一非参数统计方法来估计数据的概率密度函数。KDEPlot能够直观地展示数据的分布特征,对于单变量和双变量数据均适用。

 

目录

基本思想

主要参数

沿轴绘制

平滑调整

多类绘制 

堆叠分布

二元分布


基本思想

核密度估计(Kernel Density Estimation, KDE)是一种用于估计随机变量概率密度函数的非参数方法。在统计学和概率论中,当我们不知道数据背后的确切分布形式时,核密度估计提供了一种灵活的方式来估计数据的分布形态。这种方法特别适用于小样本数据和复杂分布的情况。

核密度估计的基本思想是将每一个数据点看作是一个小型的、平滑的“核”函数(通常是正态分布、均匀分布或其他形式的对称、平滑函数)的中心,然后计算这些核函数在整个数据空间上的叠加结果。这个叠加的结果就是整个数据集的密度估计。

主要参数

  • data:要绘制的数据集,可以是一维数组(单变量)或二维数组/DataFrame(双变量)。
  • shade:是否在核密度曲线下绘制阴影,默认为True。阴影可以帮助更直观地展示数据的分布范围。
  • color:曲线的颜色,默认为绿色('g')。
  • hue :语义映射以确定绘图元素颜色的语义变量。
  • linewidth:曲线的宽度,默认为1。
  • bw(bandwidth):核密度估计的带宽,控制曲线的平滑程度。默认为'scott',即使用Scott的规则自动计算带宽。
  • bw_adjust : 平滑程度缩放的因子。增加将使曲线更平滑。
  • gridsize:用于计算核密度的网格大小,默认为100。增加此值可以提高图形的分辨率,但也会增加计算时间。
  • cumulative:是否绘制累积密度函数(CDF),默认为False。如果设置为True,则绘制的是数据的累积分布函数而非概率密度函数。
  • vertical:在单变量输入时有效,用于控制是否颠倒x-y轴位置,默认为False。
  • kernel:核密度估计的方法,默认为'gau'(高斯核)。特别地,在二维变量的情况下仅支持高斯核方法。
  • cmap:在绘制二维KDE图时使用的颜色映射(colormap),用于控制核密度区域的递进色彩方案。

沿轴绘制

沿x轴绘制单变量分布

tips = sns.load_dataset("tips")
sns.kdeplot(data=tips, x="total_bill", shade=True, color="g")

沿y轴绘制单变量分布

sns.kdeplot(data=tips, y="total_bill", shade=True, color="g")

平滑调整

使用更少的平滑

sns.kdeplot(data=tips, x="total_bill", bw_adjust=.1, shade=True, color="b")

使用更多的平滑(不绕过极端值)

ax= sns.kdeplot(data=tips, x="total_bill", bw_adjust=5, cut=0, shade=True, color="b")

 

 

多类绘制 

绘制多类或多列数据 

iris = sns.load_dataset("iris")
sns.kdeplot(data=iris, shade=True)

使用不同的调色 

iris = sns.load_dataset("iris")
sns.kdeplot(data=iris, shade=True, palette="crest")

 

堆叠分布

堆叠条件分布multiple="stack"

sns.kdeplot(data=tips, x="total_bill", hue="time", multiple="stack", palette="PRGn")

 

按照填充堆叠multiple="fill"

sns.kdeplot(data=tips, x="total_bill", hue="time", multiple="fill",palette="PRGn")

 

二元分布

绘制x,y的二元分布图

sns.kdeplot(data=geyser, x="waiting", y="duration")

使用 hue 语义映射以显示条件分布

geyser = sns.load_dataset("geyser")
sns.kdeplot(data=geyser, x="waiting", y="duration", hue="kind")

填空含语义映射的条件分布曲线 

geyser = sns.load_dataset("geyser")
sns.kdeplot(data=geyser, x="waiting", y="duration", hue="kind", shade=True, shade_lowest=False, cmap="crest")

 

这篇关于【Python】数据可视化之核密度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136288

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下