手把手教你如何使用MMDetection训练自己的数据集

2024-09-04 14:28

本文主要是介绍手把手教你如何使用MMDetection训练自己的数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、配置环境
    • 1. 创建一个名为mmdetection的虚拟环境
    • 2. 安装GPU版本的PyTorch
    • 3. 安装mmdetection所需的包
  • 二、下载源码并安装配置文件
    • 1. 下载 GitHub 上的mmdetection源码到本地
    • 2. 安装源码中的配置文件
    • 3. 配置成功
  • 三、测试是否成功安装
    • 1. 下载配置文件和模型权重文件。
    • 2. 推理验证
  • 四、数据集准备
    • 1. 准备好coco格式的数据集
    • 2. 创建新的数据集类
    • 3. 录入数据集
  • 五、模型准备
    • 1. 模型选择
    • 2. 配置文件准备及修改
      • 生成配置文件
      • 修改配置文件
      • 注册数据集的metainfo
    • 3. 模型训练

参考 : MMDetection全流程实战指南:手把手带你构建目标检测模型

一、配置环境

1. 创建一个名为mmdetection的虚拟环境

conda create -n mmdetection python=3.9 -y
conda activate mmdetection

2. 安装GPU版本的PyTorch

# GPU版本
conda install pytorch torchvision -c pytorch

这里如果安装失败了需要去官网 pytorch官网 找对应的版本下载;

先输入nvidia-smi命令查看可下载的cuda的最高版本
在这里插入图片描述
我的可下载的最高CUDA版本为12.0,因此我选择11.8的这个下载命令进行下载

在这里插入图片描述
在这里插入图片描述

下载后进行检验是否安装成功

import torch
torch.cuda.is_available()
exit()

在这里插入图片描述
可以看到输出为true,安装成功。

3. 安装mmdetection所需的包

使用 OpenMMLab 推出的 MIM 来安装 MMEngine 和 MMCV 两个必要的库。

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

至此,需要下载的包就都全部完成了,可以使用conda list命令来查看一下是否都安装成功了。
在这里插入图片描述

二、下载源码并安装配置文件

1. 下载 GitHub 上的mmdetection源码到本地

cd /path #(进入到你自己下载mmdetection代码的位置)
# 在Github上git代码
git clone https://github.com/open-mmlab/mmdetection.git

如果git失败就直接下载源码即可

github-mmdetection

在这里插入图片描述

2. 安装源码中的配置文件

# 进入mmdetection对应的文件夹
cd mmdetection
# 安装配置文件
pip install -v -e .

在这里插入图片描述

3. 配置成功

在这里插入图片描述

三、测试是否成功安装

1. 下载配置文件和模型权重文件。

mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .

在这里插入图片描述
下载结束后可以在当前文件夹中发现两个文件

  • rtmdet_tiny_8xb32-300e_coco.py
  • rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth。
    在这里插入图片描述

2. 推理验证

python demo/image_demo.py demo/demo.jpg rtmdet_tiny_8xb32-300e_coco.py --weights rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth --device cuda

在输入命令后我遇到了 “AssertionError: MMCV==2.2.0 is used but incompatible. Please install mmcv>=2.0.0rc4, <2.2.0” 的问题

在这里插入图片描述

  • 解决方法:注释掉/mmdetection-main/mmdet/init.py文件中的相关断言
# assert (mmcv_version >= digit_version(mmcv_minimum_version)
#         and mmcv_version < digit_version(mmcv_maximum_version)), \
#     f'MMCV=={mmcv.__version__} is used but incompatible. ' \
#     f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.'

在这里插入图片描述
再次运行后成功

在这里插入图片描述
结果可在outputs文件夹中查看;

在这里插入图片描述
至此mmdetection的安装和配置完成,下面将进行自定义数据集的配置。

四、数据集准备

1. 准备好coco格式的数据集

coco格式数据集如下所示:

在这里插入图片描述
在mmdetection文件夹下新建一个data数据集,再新建一个子文件夹名为coco,然后存放自己的数据集;

在这里插入图片描述

2. 创建新的数据集类

进入 mmdet/datasets 这个文件夹里,并创建一个自己命名数据集的 Python 文件,我的叫做plantdoc.py

在这里插入图片描述
由于是 coco 格式的数据集,因此可以直接复制名为 coco.py 文件的内容到 plantdoc.py 文件,然后修改里面对应的内容。

我们需要把coco.py中的类名数据集中的类别标注的颜色换成自己的数据集的类名

  • 下图为coco.py中的内容
    在这里插入图片描述

  • 下图为我自己的plantdoc.py类
    在这里插入图片描述

3. 录入数据集

在mmdet/datasets/init.py中仿照coco的格式把我们自己的数据集进行录入。

  • import 的内容就是我们自定义的 dataset 名字
  • 最后在下面也要加上对应 Dataset 的名称。
    在这里插入图片描述

五、模型准备

1. 模型选择

在config文件夹中选择想要使用的目标检测模型,我这里选择的是deformable_detr

在这里插入图片描述

配置文件中设置的epoch=50,batch=32,我这里根据我自己的设备修改为了epoch=36,batch=8

在这里插入图片描述

2. 配置文件准备及修改

由于在 MMDetection 里大多用的都是 COCO 格式的数据集,因此在这里直接修改 work_dir 文件夹里对应的配置文件会比起重新创建更加的方便。

生成配置文件

首先运行deformable-detr的训练命令

python tools/train.py configs/deformable_detr/deformable-detr_r50_16xb2-50e_coco.py

可以看到mmdetection文件夹中生成了一个work_dirs子文件夹,deformable-detr_r50_16xb2-50e_coco.py中就是完整的配置文件;

在这里插入图片描述

修改配置文件

把配置文件修改成和我们自己的数据集适配

  • 修改数据集类别数:从80改为27(自己的数据集类别个数)

在这里插入图片描述

  • 修改dataset_type:从CocoDataset改为PlantdocDataset(自己的数据集名称)

在这里插入图片描述

  • 还可以修改学习率:比如数据集很少的话,可以把学习率调得比较小,从而让其能够慢慢的学习到图像的特征。

注册数据集的metainfo

在配置文件中创建一个 metainfo,将自己的 classes(标签类别)和 palette(调色板)写入,并且在 train_dataloader、val_dataloader 和 test_dataloader 里写入;

  • 我的数据集的metainfo:

在这里插入图片描述

metainfo = dict(classes=('Tomato Septoria leaf spot','Bell_pepper leaf','Corn rust leaf','Potato leaf late blight','Corn leaf blight','Strawberry leaf','Tomato leaf late blight','Blueberry leaf','Soyabean leaf','Tomato mold leaf','Squash Powdery mildew leaf','Raspberry leaf','Tomato leaf bacterial spot','Apple rust leaf','Peach leaf','Potato leaf early blight','Tomato Early blight leaf','Apple Scab Leaf','Grape leaf','Tomato leaf','Grape leaf black rot','Apple leaf','Corn Gray leaf spot','Bell_pepper leaf spot','Cherry leaf','Tomato leaf mosaic virus','Tomato leaf yellow virus',),palette=[(220,20,60,),(119,11,32,),(0,0,142,),(0,0,230,),(106,0,228,),(0,60,100,),(0,80,100,),(0,0,70,),(0,0,192,),(250,170,30,),(100,170,30,),(220,220,0,),(175,116,175,),(250,0,30,),(165,42,42,),(255,77,255,),(0,226,252,),(182,182,255,),(0,82,0,),(120,166,157,),(110,76,0,),(174,57,255,),(199,100,0,),(72,0,118,),(255,179,240,),(0,125,92,),(209,0,151,),])

在train_dataloader、test_dataloader、val_dataloader中都写入;

在这里插入图片描述
在这里插入图片描述

3. 模型训练

此时我们运行work_dirs目录下的配置文件,然后就可以开始训练啦

python tools/train.py work_dirs/deformable-detr_r50_16xb2-50e_coco.py

在这里插入图片描述
可以查看每个epoch的loss、剩余时间等等

这篇关于手把手教你如何使用MMDetection训练自己的数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136229

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(