大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka

2024-09-04 11:44

本文主要是介绍大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(正在更新!)

章节内容

上节我们完成了如下的内容:

  • Sink 的基本概念等内容
  • Sink的相关信息 配置与使用
  • Sink案例写入Redis

在这里插入图片描述

JDBC Sink

在 Apache Flink 中,通过 JDBC Sink,可以将处理后的数据写入到 MySQL 数据库中。这对于将实时处理的数据持久化或与其他系统进行集成非常有用。

Flink JDBC Sink 简介

Flink 提供了 JdbcSink,它是基于 JDBC 协议的 Sink,可以将数据写入各种关系型数据库,包括 MySQL。在使用 JDBC Sink 时,需要提供数据库连接信息和 SQL 语句,通过这些信息,Flink 将数据流中的记录插入或更新到 MySQL 表中。

Flink 到 MySQL 的基本步骤

将数据流写入 MySQL 的步骤主要包括以下几点:

  • 依赖库配置:确保在项目中引入了 Flink 和 MySQL 相关的依赖库,通常需要配置 Maven 或 Gradle。
  • 定义数据源和数据流:创建并处理数据流。
  • 配置 JDBC Sink:提供数据库的连接信息和插入 SQL 语句。
  • 启动任务:将数据流写入 MySQL。

优化建议

在实际项目中,向 MySQL 插入大量数据时,应考虑以下优化策略:

  • 批量插入:通过 JdbcExecutionOptions 配置批量插入,可以大幅提升写入性能。
  • 连接池:对于高并发的写入操作,建议使用连接池来减少数据库连接开销。
  • 索引优化:为插入的表配置合适的索引,可以提高查询性能,但在大量写入时,索引可能会降低- 插入速度,因此需要权衡。
  • 数据分片:对于非常大规模的数据,可以考虑将数据分片并行写入不同的 MySQL 实例或分区表中。

案例:流数据下沉到MySQL

添加依赖

<dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.28</version>
</dependency>

编写代码

一个Person的类,对应MySQL中的一张表的字段。
模拟几条数据流,写入到 MySQL中。

package icu.wzk;import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;public class SinkSqlTest {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<Person> data = env.getJavaEnv().fromElements(new Person("wzk", 18, 1),new Person("icu", 20, 1),new Person("wzkicu", 13, 2));data.addSink(new MySqlSinkFunction());env.execute();}public static class MySqlSinkFunction extends RichSinkFunction<Person> {private PreparedStatement preparedStatement = null;private Connection connection = null;@Overridepublic void open(Configuration parameters) throws Exception {String url = "jdbc:mysql://h122.wzk.icu:3306/flink-test?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC";String username = "hive";String password = "hive@wzk.icu";connection = DriverManager.getConnection(url, username, password);String sql = "INSERT INTI PERSON(name, age, sex) VALUES(?, ?, ?)";preparedStatement = connection.prepareStatement(sql);}@Overridepublic void invoke(Person value, Context context) throws Exception {preparedStatement.setString(1, value.getName());preparedStatement.setInt(2, value.getAge());preparedStatement.setInt(3, value.getSex());preparedStatement.executeUpdate();}@Overridepublic void close() throws Exception {if (null != connection) {connection.close();}if (null != preparedStatement) {preparedStatement.close();}}}public static class Person {private String name;private Integer age;private Integer sex;public Person() {}public Person(String name, Integer age, Integer sex) {this.name = name;this.age = age;this.sex = sex;}public String getName() {return name;}public void setName(String name) {this.name = name;}public Integer getAge() {return age;}public void setAge(Integer age) {this.age = age;}public Integer getSex() {return sex;}public void setSex(Integer sex) {this.sex = sex;}}
}

数据库配置

我们新建一张表出来,person表,里边有我们需要的字段。
在这里插入图片描述

运行代码

我们运行代码,等待运行结束。
在这里插入图片描述

查看结果

查看数据库中的数据,我们可以看到刚才模拟的数据已经成功写入了。
在这里插入图片描述

案例:写入到Kafka

编写代码

package icu.wzk;import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.scala.DataStream;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;public class SinkKafkaTest {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStream<String> data = env.socketTextStream("localhost", 9999, '\n', 0);String brokerList = "h121.wzk.icu:9092";String topic = "flink_test";FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(brokerList, topic, new SimpleStringSchema());data.addSink(producer);env.execute("SinkKafkaTest");}}

运行代码

启动一个 nc

nc -lk 9999

我们通过回车的方式,可以发送数据。
在这里插入图片描述
Java 程序中等待
在这里插入图片描述

查看结果

我们登录到服务器查看信息

./kafka-console-consumer.sh --bootstrap-server h121.wzk.icu:9092 --topic flink_test --from-beginning

可以看到刚才的数据已经写入了:
在这里插入图片描述

这篇关于大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135929

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也