用于基于骨架的动作识别的空间时间图卷积网络 ST-GCN (代码+数据集+模型)

本文主要是介绍用于基于骨架的动作识别的空间时间图卷积网络 ST-GCN (代码+数据集+模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介 本仓库包含论文《用于基于骨架的动作识别的空间时间图卷积网络》的相关代码、数据集和模型。

ST-GCN 动作识别演示 我们的基于骨架的动作识别演示展示了ST-GCN如何从人体骨架中提取局部模式和关联性。下图显示了我们ST-GCN最后一层中每个节点的神经响应幅度。

触摸头部 坐下 脱鞋 进食 投踢他人 掷锤 清洁与抓举 拉力器 太极拳 抛球 上一行结果来自NTU-RGB+D数据集,第二行来自Kinetics-skeleton数据集。

前提条件

  • Python3(版本大于3.5)
  • PyTorch
  • Openpose(带Python API,仅用于演示)
  • 其他Python库可以通过运行pip install -r requirements.txt来安装

安装

 
1git clone https://github.com/yysijie/st-gcn.git; cd st-gcn
2cd torchlight; python setup.py install; cd ..

获取预训练模型 我们提供了ST-GCN的预训练模型权重。可以通过运行以下脚本来下载模型:

 
1bash tools/get_models.sh

您也可以从GoogleDrive或百度云获取模型,并手动将其放入./models目录下。

演示 您可以使用以下命令运行演示:

  • 离线姿态估计

     
    1python main.py demo_offline [--video ${视频路径}] [--openpose ${Openpose路径}]
  • 实时姿态估计

     
    1python main.py demo [--video ${视频路径}] [--openpose ${Openpose路径}]

可选参数:

  • PATH_TO_OPENPOSE: 如果Openpose Python API不在PYTHONPATH中,则需要此路径。
  • PATH_TO_VIDEO: 输入视频的文件名。

数据准备 我们在两个基于骨架的动作识别数据集上进行了实验:Kinetics-skeleton 和 NTU RGB+D。为了方便快速加载数据,在训练和测试前,数据集应转换为合适的文件结构。您可以从GoogleDrive下载预处理后的数据并解压文件:

 
1cd st-gcn
2unzip <st-gcn-processed-data.zip路径>

否则,如果您想自己处理原始数据,请参考以下指南。

  • Kinetics-skeleton Kinetics是一个基于视频的动作识别数据集,只提供原始视频剪辑而无骨架数据。为了获得关节位置,我们首先将所有视频调整为340x256的分辨率并将帧率转换为30 fps,然后通过Openpose从每帧中提取骨架。提取的骨架数据(Kinetics-skeleton,7.5GB)可以从GoogleDrive或百度云直接下载。

     

    解压后,通过以下命令重建数据库:

    1python tools/kinetics_gendata.py --data_path <Kinetics-skeleton路径>
  • NTU RGB+D NTU RGB+D可以从其官方网站下载。我们的实验只需要3D骨架模态(5.8GB)。之后,使用以下命令构建训练或评估所需的数据库:

    1python tools/ntu_gendata.py --data_path <nturgbd+d_skeletons路径>

    其中 <nturgbd+d_skeletons路径> 是您下载的NTU RGB+D数据集中3D骨架模态的位置。

测试预训练模型

  • 评估在Kinetics-skeleton上预训练的ST-GCN模型:

    1python main.py recognition -c config/st_gcn/kinetics-skeleton/test.yaml
  • 在NTU RGB+D上的跨视角评估:

    1python main.py recognition -c config/st_gcn/ntu-xview/test.yaml
  • 在NTU RGB+D上的跨主体评估:

    1python main.py recognition -c config/st_gcn/ntu-xsub/test.yaml

为了加速评估或修改批处理大小以减少内存成本,可以设置 --test_batch_size--device

1python main.py recognition -c <配置文件> --test_batch_size <批次大小> --device <gpu0> <gpu1> ...

结果 提供的模型预期Top-1准确度如下:

模型Kinetics-skeleton (%)NTU RGB+D (Cross View) (%)NTU RGB+D (Cross Subject) (%)
基线模型[1]20.383.174.3
ST-GCN (我们的模型)31.688.881.6

[1] Kim, T. S., and Reiter, A. 2017. Interpretable 3d human action analysis with temporal convolutional networks. In BNMW CVPRW.

训练 要训练一个新的ST-GCN模型,运行:

1python main.py recognition -c config/st_gcn/<dataset>/train.yaml [--work_dir <工作目录>]

其中 <dataset> 必须是ntu-xsub、ntu-xview或kinetics-skeleton,取决于您要使用的数据集。默认情况下,训练结果(包括模型权重、配置文件和日志文件)将保存在 ./work_dir 目录下,或如果您指定了 <工作目录> 则保存在该目录下。

您可以在命令行或配置文件中修改训练参数,如work_dir、batch_size、step、base_lr和device。优先级顺序为:命令行 > 配置文件 > 默认参数。更多信息,请使用 main.py -h 查看帮助。

最后,可以通过以下命令自定义模型评估:

1python main.py recognition -c config/st_gcn/<dataset>/test.yaml --weights <模型权重路径>

这篇关于用于基于骨架的动作识别的空间时间图卷积网络 ST-GCN (代码+数据集+模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135863

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061