分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出

本文主要是介绍分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出

文章目录

  • 一、基本原理
      • SAO(雪消融智能优化算法)回归预测中的应用
      • XGBoost 回归预测基本原理
      • SAO-XGBoost 流程
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出

一、基本原理

SAO-XGBoost 在回归预测中的应用可以通过以下详细基本原理和流程来实现:

SAO(雪消融智能优化算法)回归预测中的应用

  1. 目标定义:确定要优化的 XGBoost 回归模型的超参数(如学习率、最大深度、子样本比例等)。

  2. 初始化 SAO

    • 解集生成:在定义的参数范围内随机生成初始解集,每个解代表一组 XGBoost 超参数。
    • 目标函数:定义评估标准,如均方误差(MSE)或均方根误差(RMSE),用于衡量模型预测的准确性。
  3. 评估模型

    • 对每个解(超参数组合),训练 XGBoost 回归模型。
    • 使用目标函数(如 MSE)评估模型性能,并计算损失值。
  4. 消融过程

    • 优化搜索:模拟雪消融的过程,通过更新和调整解集来探索更优的超参数组合。
    • 动态调整:根据目标函数值调整搜索策略,增强全局搜索能力,防止陷入局部最优。
  5. 更新与迭代

    • 更新解集:根据目标函数值更新当前解集,淘汰性能较差的解,保留或调整性能较好的解。
    • 迭代训练:重复评估、消融和更新步骤,直到满足停止条件,如目标函数值达到预期水平或达到最大迭代次数。

XGBoost 回归预测基本原理

  1. 模型构建

    • 决策树集成:XGBoost 回归模型通过集成多个决策树来提高预测性能。每棵树都在前一棵树的残差上进行训练。
    • 损失函数:使用回归特有的损失函数(如平方损失),最小化预测值与实际值之间的误差。
  2. 训练过程

    • 初始化:开始时生成基准预测值,通常为目标值的均值。
    • 残差计算:计算当前模型预测值与真实目标值之间的残差。
    • 新树训练:训练新的决策树以拟合残差。
    • 模型更新:将新训练的树集成到现有模型中,更新预测值。
    • 正则化:应用正则化技术(如树的复杂度控制)以防止过拟合。
  3. 参数调优

    • 超参数调节:调整模型的超参数(如树的深度、学习率、子样本比例)以优化模型性能。

SAO-XGBoost 流程

  1. 初始化 SAO:生成一组 XGBoost 超参数的初始解集。

  2. 模型训练与评估

    • 对每组超参数配置训练 XGBoost 回归模型。
    • 使用目标函数评估模型性能,如 MSE。
  3. 优化与调整

    • 应用 SAO 算法优化超参数组合,通过消融过程逐步逼近最佳参数配置。
  4. 最终训练

    • 在找到的最佳超参数配置下,训练最终的 XGBoost 回归模型。
  5. 预测与应用

    • 使用优化后的模型进行回归预测,并在实际应用中进行验证。

SAO-XGBoost 通过将 SAO 的全局优化能力与 XGBoost 的强大回归预测性能结合起来,旨在提高模型的预测准确性和效率。

二、实验结果

SAO-XGBoost是一种基于雪消融优化极端梯度提升的数据分类预测Matlab程序,可以实现多特征输入多类别输出。经过对比试验,SAO-XGBoost的分类结果相比传统算法有了明显提升,具有更高的准确率和可靠性。采用XGBoost算法,可以在处理大量数据时提高计算速度,节省时间和成本。因此,SAO-XGBoost是一个非常实用的分类预测工具,可以广泛应用于各个领域,如金融、医疗、教育等。

SAO-XGBoost分类结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134318

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、