分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出

本文主要是介绍分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出

文章目录

  • 一、基本原理
      • SAO(雪消融智能优化算法)回归预测中的应用
      • XGBoost 回归预测基本原理
      • SAO-XGBoost 流程
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出

一、基本原理

SAO-XGBoost 在回归预测中的应用可以通过以下详细基本原理和流程来实现:

SAO(雪消融智能优化算法)回归预测中的应用

  1. 目标定义:确定要优化的 XGBoost 回归模型的超参数(如学习率、最大深度、子样本比例等)。

  2. 初始化 SAO

    • 解集生成:在定义的参数范围内随机生成初始解集,每个解代表一组 XGBoost 超参数。
    • 目标函数:定义评估标准,如均方误差(MSE)或均方根误差(RMSE),用于衡量模型预测的准确性。
  3. 评估模型

    • 对每个解(超参数组合),训练 XGBoost 回归模型。
    • 使用目标函数(如 MSE)评估模型性能,并计算损失值。
  4. 消融过程

    • 优化搜索:模拟雪消融的过程,通过更新和调整解集来探索更优的超参数组合。
    • 动态调整:根据目标函数值调整搜索策略,增强全局搜索能力,防止陷入局部最优。
  5. 更新与迭代

    • 更新解集:根据目标函数值更新当前解集,淘汰性能较差的解,保留或调整性能较好的解。
    • 迭代训练:重复评估、消融和更新步骤,直到满足停止条件,如目标函数值达到预期水平或达到最大迭代次数。

XGBoost 回归预测基本原理

  1. 模型构建

    • 决策树集成:XGBoost 回归模型通过集成多个决策树来提高预测性能。每棵树都在前一棵树的残差上进行训练。
    • 损失函数:使用回归特有的损失函数(如平方损失),最小化预测值与实际值之间的误差。
  2. 训练过程

    • 初始化:开始时生成基准预测值,通常为目标值的均值。
    • 残差计算:计算当前模型预测值与真实目标值之间的残差。
    • 新树训练:训练新的决策树以拟合残差。
    • 模型更新:将新训练的树集成到现有模型中,更新预测值。
    • 正则化:应用正则化技术(如树的复杂度控制)以防止过拟合。
  3. 参数调优

    • 超参数调节:调整模型的超参数(如树的深度、学习率、子样本比例)以优化模型性能。

SAO-XGBoost 流程

  1. 初始化 SAO:生成一组 XGBoost 超参数的初始解集。

  2. 模型训练与评估

    • 对每组超参数配置训练 XGBoost 回归模型。
    • 使用目标函数评估模型性能,如 MSE。
  3. 优化与调整

    • 应用 SAO 算法优化超参数组合,通过消融过程逐步逼近最佳参数配置。
  4. 最终训练

    • 在找到的最佳超参数配置下,训练最终的 XGBoost 回归模型。
  5. 预测与应用

    • 使用优化后的模型进行回归预测,并在实际应用中进行验证。

SAO-XGBoost 通过将 SAO 的全局优化能力与 XGBoost 的强大回归预测性能结合起来,旨在提高模型的预测准确性和效率。

二、实验结果

SAO-XGBoost是一种基于雪消融优化极端梯度提升的数据分类预测Matlab程序,可以实现多特征输入多类别输出。经过对比试验,SAO-XGBoost的分类结果相比传统算法有了明显提升,具有更高的准确率和可靠性。采用XGBoost算法,可以在处理大量数据时提高计算速度,节省时间和成本。因此,SAO-XGBoost是一个非常实用的分类预测工具,可以广泛应用于各个领域,如金融、医疗、教育等。

SAO-XGBoost分类结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134318

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则