大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘

2024-09-03 21:52

本文主要是介绍大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用大模型进行微调时,特别是在语音识别、自然语言处理等任务中经常会遇到两个主要方法:全量微调和LoRA微调。全量微调涉及更新模型的所有参数,而LoRA(Low-Rank Adaptation)则专注于更新少量的参数来适应新的任务。这两种方法各有优缺点,并有不同的应用场景。

全量微调

1. 什么是全量微调?

全量微调是指在微调阶段,更新模型中所有参数。这个过程通常在大规模数据集上进行,以适应新的任务或改进性能。

2. 优点
  • 高灵活性:可以最大程度地优化模型以适应新任务。
  • 广泛应用:在很多场景下使用,已经被高度研究和优化。
3. 缺点
  • 高计算成本:需要更新所有参数,计算和存储成本较高。
  • 灾难性遗忘:在没有小心设计策略的情况下,模型可能会丢失原先在预训练阶段学到的信息。
4. 如何进行全量微调

以下是使用PyTorch进行全量微调的一个示例:

from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from torch.utils.data import DataLoader
import torch# 加载预训练模型和tokenizer
model_name = 'bert-base-uncased'
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

LoRA微调

1. 什么是LoRA微调?

LoRA微调是一种低秩适应方法,主要通过在特定的层和特定的尺寸上添加一些低秩矩阵,然后只更新这些低秩矩阵。它旨在减少微调过程中计算和存储成本。

2. 优点
  • 低计算成本:只更新少量参数,大大降低计算和存储需求。
  • 适用于资源受限的环境:特别是在嵌入式设备或移动设备上有用。
3. 缺点
  • 适应性较差:在某些复杂任务中,LoRA可能无法达到全量微调的性能。
  • 需要特殊设计:需要仔细选择哪些层和参数进行低秩适应。
4. 如何进行LoRA微调

以下是一个LoRA微调的示例:

import torch
import torch.nn as nn
from transformers import BertModel, BertTokenizerclass LoRAModule(nn.Module):def __init__(self, model, lora_rank=4):super(LoRAModule, self).__init__()self.lora_rank = lora_rankself.original_weight = model.classifier.weight.data.clone()self.rank_map = nn.Parameter(torch.randn(lora_rank, model.classifier.weight.size(1)))self.ranked_weight = Nonedef forward(self, x):if self.ranked_weight is None:self.ranked_weight = torch.mm(self.rank_map, self.original_weight)return torch.mm(x, self.ranked_weight.t())# 加载预训练模型
model_name = 'bert-base-uncased'
model = BertModel.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)# 替换BERT模型中的classifier为LoRAModule
model.classifier = LoRAModule(model)# 假设你有一个数据集DataLoader
train_dataloader = DataLoader(...)# 定义优化器
optimizer = AdamW(model.parameters(), lr=2e-5)# 设置训练参数
num_epochs = 3# 训练循环
model.train()
for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']outputs = model(**inputs, labels=labels)loss = outputs.loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

避免灾难性遗忘

灾难性遗忘是指模型在微调新任务时,丢失了在原始任务中学到的信息。为避免这一问题,可以使用以下策略:

1. 定期微调

使用小的学习率并进行多次微调,有助于模型逐步适应新任务,从而尽量保留原有知识。

2. 可调参数冻结

冻结部分模型参数,只微调部分特定层。通常,这些层是模型的后几层(高级特征层)。

for name, param in model.named_parameters():if "classifier" not in name:  # 只解冻分类头param.requires_grad = False

3. 蒙特卡罗Dropout

在训练过程中使用dropout可以帮助模型学习更具泛化性的特征。

4. 经验重放

混合原始任务的数据和新任务的数据,共同训练模型,以保留原始任务的信息。

5. 知识蒸馏

在微调过程中,将新任务学生模型的输出与原始任务教师模型的输出进行对比,从而引导模型保留原有任务的信息。

知识蒸馏示例代码:
import torch.nn.functional as F# 假设teacher_model是预训练模型,student_model是微调模型
teacher_model.eval()  # 教师模型不更新权重
alpha = 0.5  # 权重系数
T = 2  # 温度for epoch in range(num_epochs):for batch in train_dataloader:inputs = tokenizer(batch['text'], padding=True, truncation=True, return_tensors="pt")labels = batch['labels']student_outputs = student_model(**inputs, labels=labels)student_loss = student_outputs.losswith torch.no_grad():teacher_outputs = teacher_model(**inputs, labels=labels)distillation_loss = F.kl_div(F.log_softmax(student_outputs.logits / T, dim=1),F.softmax(teacher_outputs.logits / T, dim=1),reduction='batchmean') * (T ** 2)loss = alpha * student_loss + (1 - alpha) * distillation_loss# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()

总结

通过全量微调和LoRA微调,可以根据任务需求和资源限制选择合适的方法。全量微调适用于需要高灵活性和高性能的任务,而LoRA微调适用于计算资源有限的场景。为了避免灾难性遗忘,可以采取定期微调、冻结部分参数、使用蒙特卡罗Dropout、体验重放和知识蒸馏等策略。这些方法可以帮助模型在适应新任务的同时,保留原有的知识。

这篇关于大模型全量微调和LoRA微调详细说明,如何避免灾难性遗忘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134154

相关文章

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字