大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis

本文主要是介绍大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(正在更新!)

章节内容

上节我们完成了如下的内容:

  • Flink DataStream Transformation
  • FlatMap Window Aggregations Reduce 等等等函数

在这里插入图片描述

Sink

Flink 的 Sink 是指数据流处理过程中最终输出数据的组件。在 Apache Flink 中,数据流从 Source 读取后经过一系列的转换操作,最后会被写入到 Sink 中。Sink 是 Flink 流式处理应用的终点,决定了处理后的数据如何保存或传输。

基本概念

Flink 的 Sink 是用来将流处理的数据写入外部存储系统的,比如数据库、文件系统、消息队列等。Sink 接口提供了一种灵活的方式来定义数据的输出格式和存储目标。Flink 提供了多个内置的 Sink 连接器,用户也可以根据需求自定义 Sink。

常见类型

Flink 提供了多种内置的 Sink,可以将数据输出到多种不同的系统中。以下是一些常见的 Flink Sink:

  • File Sink:将数据输出到文件系统,支持多种文件格式,如文本文件、CSV、Parquet 等。
  • Kafka Sink:将数据输出到 Kafka 主题,用于构建流式数据管道。
  • Elasticsearch Sink:将数据写入 Elasticsearch 索引,适用于实时数据搜索和分析。
  • JDBC Sink:将数据写入关系型数据库,如 MySQL、PostgreSQL 等。
  • HDFS Sink:将数据存储在 Hadoop 分布式文件系统中,适用于大规模数据的长期存储。
  • Cassandra Sink:将数据写入 Cassandra 数据库,适用于大规模的 NoSQL 数据存储

配置与使用

要在 Flink 应用中使用 Sink,需要通过 DataStream 的 addSink 方法来配置和添加 Sink。例如,将数据写入 Kafka 的简单配置如下:

DataStream<String> dataStream = // 数据处理逻辑
dataStream.addSink(new FlinkKafkaProducer<>("localhost:9092",         // Kafka broker 地址"output-topic",           // 输出的 Kafka 主题new SimpleStringSchema()   // 数据序列化格式
));

同样,配置 JDBC Sink 的方式如下:

dataStream.addSink(JdbcSink.sink("INSERT INTO my_table (column1, column2) VALUES (?, ?)",(statement, value) -> {statement.setString(1, value.f0);statement.setInt(2, value.f1);},JdbcExecutionOptions.builder().withBatchSize(1000).withBatchIntervalMs(200).build(),new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withUrl("jdbc:mysql://localhost:3306/mydb").withDriverName("com.mysql.jdbc.Driver").withUsername("user").withPassword("password").build()
));

自定义 Sink

除了使用内置的 Sink,Flink 还允许开发者实现自定义 Sink。通过实现 SinkFunction 接口或扩展 RichSinkFunction 类,开发者可以定义自己所需的 Sink。自定义 Sink 通常用于需要特殊处理或集成尚不支持的外部系统。

例如,自定义一个简单的控制台打印 Sink:

public class PrintSinkFunction<T> extends RichSinkFunction<T> {@Overridepublic void invoke(T value, Context context) {System.out.println(value);}
}

Sink 的容错机制

Flink 提供了精确一次 (Exactly-Once) 和至少一次 (At-Least-Once) 的容错语义,具体取决于 Sink 的类型及其配置。例如,Kafka Sink 通常支持精确一次语义,而某些文件系统 Sink 可能只支持至少一次语义。通过启用 Flink 的 Checkpointing 机制,Sink 可以在发生故障时从最近的检查点恢复,从而保证数据的一致性。

Sink 的并行度

Flink 的 Sink 通常是并行的,默认情况下与上游操作的并行度一致。用户可以通过 setParallelism 方法来手动调整 Sink 的并行度。注意,对于一些 Sink,如文件系统 Sink,并行度越高,生成的文件数也越多。

生命周期

Flink 的 Sink 在执行时会经历以下几个阶段:

  • 打开 (open):初始化资源,如数据库连接、文件句柄等。
  • 写入 (invoke):将每一条数据写入目标存储系统。
  • 关闭 (close):关闭资源,确保数据完整写入和资源的正确释放。

简单示例

以下是一个将处理后的数据流写入文本文件的完整示例:

DataStream<String> dataStream = // 数据处理逻辑
StreamingFileSink<String> sink = StreamingFileSink.forRowFormat(new Path("/output/path"), new SimpleStringEncoder<String>("UTF-8")).build();dataStream.addSink(sink);

案例1:数据写入Redis

添加依赖

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.5</version>
</dependency>

编写代码

消费Kafka 计算之后 写入到 Redis中。
Source(Kafka) -> Sink(Redis)

package icu.wzk;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;import java.util.Properties;public class StreamFromKafka {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 配置信息Properties properties = new Properties();properties.setProperty("bootstrap.servers", "h121.wzk.icu:9092");// KafkaFlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("flink_test",new SimpleStringSchema(),properties);DataStreamSource<String> data = env.getJavaEnv().addSource(consumer);SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = data.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {String[] words = value.split(" ");for (String word: words) {out.collect(new Tuple2<>(word, 1));}}});SingleOutputStreamOperator<Tuple2<String, Integer>> result = wordAndOne.keyBy(new KeySelector<Tuple2<String, Integer>, Object>() {@Overridepublic Object getKey(Tuple2<String, Integer> value) throws Exception {return value.f0;}}).sum(1);result.print();env.execute("StreamFromKafka");}}

启动Kafka

在这里插入图片描述

启动Redis

在这里插入图片描述

运行代码

在这里插入图片描述

写入数据

在这里插入图片描述

查看结果

在这里插入图片描述

这篇关于大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133117

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三