大模型LLMs很火,作为新生小白应该怎么入门 LLMs?是否有推荐的入门教程推荐?

本文主要是介绍大模型LLMs很火,作为新生小白应该怎么入门 LLMs?是否有推荐的入门教程推荐?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很明显,这是一个偏学术方向的指南要求,所以我会把整个LLM应用的从数学到编程语言,从框架到常用模型的学习方法,给你捋一个通透。也可能是不爱学习的劝退文。

通常要达到熟练的进行LLM相关的学术研究与开发,至少你要准备 数学、编码、常用模型的知识,还有LLM相关的知识的准备。

TL;DR

要求总结:

  • 数学知识:线性代数、高数、概率
  • 开发语言:Python, C/C++
  • 开发框架:Numpy/Pytorch/Tensorflow/Keras/Onnx
  • 常用模型:MLP、CNN、RNN、Transformer(GPT-2、RWKV、Mamba、TTT)
  • LLM相关:Prompt各种理论框架,RAG各种技术,FineTune的几种方法

好了,开始正式的劝退版吧。

数学是基础,但是对于研究生来讲可能又不是大问题。

通常数学对于毕业后的人来讲,需要简单的看一下,对于一个研究生一年级的人来讲不是问题。毕竟线性代数、高数、概率都是必考。只有凸优化这东西,可能是门需要自己再看一下的课程。

线性代数:关键概念包括向量、矩阵、。重要的公式涉及矩阵乘法、及特征值方程Av=λv,其中 A是矩阵,v 是特征向量,λ是特征值。

高数:基本是微积分,重点是理解极限、导数和积分的概念。函数 f(x) 在点 x的导数由f′(x)=limh→0 f(x+h)−f(x) 给出,基本微积分定理将微分与积分联系起来。

概率:关键点包括概率公理、条件概率、随机变量和分布。例如,贝叶斯定理由P(A∣B)=P(B∣A)P(A)/P(B)给出,它帮助在发生B 的情况下更新 A 的概率。

凸优化:关注目标函数的问题。关键概念包括凸集、凸函数、梯度下降。梯度下降更新规则可以表示为 xn+1 =xn −α∇f(xn ),其中 α是学习率。可能你需要在此努力一下。

编码,以前需要大量的时间,现在你只需要适应AI的Copilot

原来编码我要写一堆的,但是最近的AI告诉我,Cursor或者任意的AI大模型都可以指导你完成基本的编码工作了。

所以你只需要知道,自己需要下面这些知识就好了。

  • 核心开发语言要掌握Python、C/C++。 如果你有更强烈的意愿,可以再去研究一下CUDA相关的知识。
  • Numpy 主要是掌握各种数据的使用方法。
  • Pytorch 与 Tensor、 Keras 就是完成各种网络及训练的方法。 Onnx就是有些模型是基于它的发布,你要会使用它来运行及分析这个模型。

但这些其实只需要你会问AI大模型就好了。

常用模型,这些可能是让你了解常识,面未来的突破就在历史

MLP、CNN、RNN的典型模型你可能要相对熟悉一点,我建议你自己手写一下。

建议是这些网络

  • LeNet-5: 这是最早的卷积神经网络之一。
  • AlexNet: AlexNet在ImageNet图像分类竞赛中表现优异,标志着深度学习的广泛应用。
  • VGGNet: VGGNet以其深度和使用的小(3x3)而闻名,常用的模型有VGG16和VGG19。
  • ResNet (Residual Networks): ResNet通过引入残差连接解决了深度网络中,最著名的版本是ResNet-50、ResNet-101。
  • Long Short-Term Memory (LSTM):LSTM通过引入门控机制解决了标准RNN中的长期依赖问题,是处理序列数据的标准模型之一。
  • Gated Recurrent Unit (GRU): GRU是LSTM的简化版本,具有类似的性能但计算效率更高。
  • Bidirectional RNN: 这是RNN的一种变体,可以同时考虑序列中前后文信息,通常用于自然语言任务。

而新一些架构,可能你要看RWKV、Mamba、TTT这三个新架构,它们的潜力还是不错的。

LLM相关

你的目标是这个,其实现在所有做人工智能的基本上都集中在这儿了。而且在卷这样简单的一个架构的各个方面:

 推荐自己手写一个 Transformer 模型,至少要写一个 Attention 的结构。还要看懂下面这个图。你就能体会到一个至简的模型是怎么遵循 Scaling Law的,AGI 可能就在这个简单的重复与变大中了!

 

当然了,一定要用数据跑个训练。GPT-2的就有非常不错的示范了。

如果你能顺利完成到这儿,我想你的水平,混个论文,搞到研究生毕业在大部分院校应该不是大问题了。如果是TOP几的。。。你自己再想一下吧。

但是,如果你觉得这些难?想找个效率更高,难度更简单的。那我建议你听个课吧。毕竟,课程是一个相对体系化,而且有人不断的能讲解且解决你的疑问的手段。相当于用钱买了你的时间与知识。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

这篇关于大模型LLMs很火,作为新生小白应该怎么入门 LLMs?是否有推荐的入门教程推荐?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133054

相关文章

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

macOS彻底卸载Python的超完整指南(推荐!)

《macOS彻底卸载Python的超完整指南(推荐!)》随着python解释器的不断更新升级和项目开发需要,有时候会需要升级或者降级系统中的python的版本,系统中留存的Pytho版本如果没有卸载干... 目录MACOS 彻底卸载 python 的完整指南重要警告卸载前检查卸载方法(按安装方式)1. 卸载

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

如何通过try-catch判断数据库唯一键字段是否重复

《如何通过try-catch判断数据库唯一键字段是否重复》在MyBatis+MySQL中,通过try-catch捕获唯一约束异常可避免重复数据查询,优点是减少数据库交互、提升并发安全,缺点是异常处理开... 目录1、原理2、怎么理解“异常走的是数据库错误路径,开销比普通逻辑分支稍高”?1. 普通逻辑分支 v

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创