Python 实现 SHA-2 数字摘要签名算法

2024-09-03 03:52

本文主要是介绍Python 实现 SHA-2 数字摘要签名算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 使用 Python 实现 SHA-2 数字摘要签名算法的博客
        • 引言
        • SHA-2 算法介绍
        • SHA-2 算法的详细步骤
        • Python 面向对象实现 SHA-256 算法
        • 代码解析
        • 应用场景:文件完整性验证
        • 总结

使用 Python 实现 SHA-2 数字摘要签名算法的博客

引言

SHA-2(Secure Hash Algorithm 2)是一组加密散列函数,由美国国家安全局(NSA)设计,并由国家标准与技术研究院(NIST)发布。SHA-2系列包含六种不同的哈希算法:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224 和 SHA-512/256。最常用的是 SHA-256 和 SHA-512。SHA-2 是 SHA-1 的后继者,比 SHA-1 提供更强的安全性,被广泛用于数字签名、证书生成和数据完整性验证等领域。

本文将详细介绍 SHA-2 算法的工作原理,提供一个基于 Python 面向对象的实现,并结合一个实际场景来演示如何使用 SHA-2 算法进行文件完整性验证。


SHA-2 算法介绍

SHA-2 是一种基于块的哈希算法,它对输入的消息进行处理,输出固定长度的哈希值(如 SHA-256 的 256 位,SHA-512 的 512 位)。SHA-2 的设计灵感来自 SHA-1,但做了重要改进,以增强抗碰撞和抗预映射攻击的能力。

SHA-2 算法的主要步骤包括:

  1. 消息填充(Padding):将消息的长度扩展到接近块大小的倍数(如 512 位或 1024 位)。
  2. 初始化哈希值:使用特定的初始哈希值来初始化状态变量。
  3. 消息分块处理:将消息分割成固定长度的块,并使用哈希计算循环迭代更新哈希值。
  4. 压缩函数(Compression Function):SHA-2 使用一个复杂的压缩函数,它在每轮操作中使用多个常量和位运算。
  5. 输出哈希值:生成一个固定长度的哈希值作为输出。
SHA-2 算法的详细步骤
  1. 消息填充

    • 原始消息在末尾添加一个 1 位,然后在末尾添加足够的 0 位,以使消息的长度接近块大小的倍数(例如 512 位或 1024 位)。最后,附加一个 64 位(或 128 位,取决于具体算法)的二进制数,表示填充前的消息长度。
  2. 初始化哈希值

    • SHA-2 使用一组初始哈希值(H0, H1, H2, …)来初始化状态。对于 SHA-256,这些初始值是前八个素数的平方根的小数部分的前 32 位。
  3. 处理消息块

    • 将消息分为512位(SHA-256)或1024位(SHA-512)的块。每个块再被划分为16个32位(SHA-256)或64位(SHA-512)的字(word)。
  4. 压缩函数

    • 对于每个块,SHA-2 进行多轮哈希计算。每轮计算包括扩展消息、使用逻辑函数和常量进行复杂操作,以及更新哈希值。SHA-256 进行 64 轮操作,SHA-512 进行 80 轮操作。
  5. 逻辑函数和常量

    • 使用多种逻辑函数(例如,右旋转、与、或、异或等)和固定的常量值来计算每轮操作的结果。
  6. 输出最终哈希值

    • 将每个块的计算结果累加到初始哈希值中,最后输出一个固定长度的哈希值。

Python 面向对象实现 SHA-256 算法

以下是一个基于 Python 面向对象的 SHA-256 实现,用于计算输入字符串的 SHA-256 哈希值。

import structclass SHA256:def __init__(self, message):"""初始化 SHA256 实例"""self.message = messageself.h = [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]self.k = [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]self._hash = self._calculate_sha256()def _right_rotate(self, n, b):"""执行右循环位移操作"""return ((n >> b) | (n << (32 - b))) & 0xFFFFFFFFdef _padding(self):"""对消息进行填充,使其长度为512的倍数"""original_byte_len = len(self.message)original_bit_len = original_byte_len * 8# 对消息填充一个 '1' 位self.message += b'\x80'# 填充 '0' 直到消息长度模512等于448位(56字节)self.message += b'\x00' * ((56 - (original_byte_len + 1) % 64) % 64)# 在最后添加64位的原始消息长度self.message += struct.pack('>Q', original_bit_len)def _calculate_sha256(self):"""计算 SHA-256 哈希值的主方法"""self.message = bytearray(self.message, 'utf-8')self._padding()# 每512位一个分组进行处理for i in range(0, len(self.message), 64):w = list(struct.unpack('>16L', self.message[i:i + 64])) + [0] * 48for j in range(16, 64):s0 = self._right_rotate(w[j - 15], 7) ^ self._right_rotate(w[j - 15], 18) ^ (w[j - 15] >> 3)s1 = self._right_rotate(w[j - 2], 17) ^ self._right_rotate(w[j - 2], 19) ^ (w[j - 2] >> 10)w[j] = (w[j - 16] + s0 + w[j - 7] + s1) & 0xFFFFFFFFa, b, c, d, e, f, g, h = self.h# 64轮操作for j in range(64):s1 = self._right_rotate(e, 6) ^ self._right_rotate(e, 11) ^ self._right_rotate(e, 25)ch = (e & f) ^ (~e & g)temp1 = (h + s1 + ch + self.k[j] + w[j]) & 0xFFFFFFFFs0 = self._right_rotate(a, 2) ^ self._right_rotate(a, 13) ^ self._right_rotate(a, 22)maj = (a & b) ^ (a & c) ^ (b & c)temp2 = (s0 + maj) & 0xFFFFFFFFh = gg = ff = ee = (d + temp1) & 0xFFFFFFFFd = cc = bb = aa = (temp1 + temp2) & 0xFFFFFFFFself.h = [(x + y) & 0xFFFFFFFF for x, y in zip(self.h, [a, b, c, d, e, f, g, h])]return ''.join(f'{i:08x}' for i in self.h)def hexdigest(self):"""返回最终的SHA-256哈希值"""return self._hash# 示例用法
if __name__ == "__main__":message = "Hello, SHA-256!"sha256 = SHA256(message)print(f"原始消息: {message}")print(f"SHA-256 哈希值: {sha256.hexdigest()}")
代码解析
  1. 消息填充与初始化_padding 方法用于填充消息,并确保其符合 SHA-256 要求的 512 位块大小。

  2. 逻辑操作_right_rotate 方法实现了右旋转操作,这是 SHA-256 哈希计算中的基础操作。

  3. 主哈希计算_calculate_sha256 方法实现了 SHA-256 的核心逻辑,包括消息调度、64 轮的哈希计算、以及状态变量更新。

  4. 输出结果hexdigest 方法返回计算所得的 SHA-256 哈希值。

应用场景:文件完整性验证

在文件传输或存储过程中,数据的完整性是非常重要的。SHA-256 哈希可以用于验证文件是否被篡改或损坏。以下是一个基于 Python 的场景演示,展示如何使用 SHA-256 算法进行文件完整性验证:

class FileIntegrityVerifier:def __init__(self, file_path):self.file_path = file_pathdef calculate_sha256(self):"""计算文件的SHA-256哈希值"""sha256 = SHA256("")hash_obj = hashlib.sha256()with open(self.file_path, 'rb') as f:for chunk in iter(lambda: f.read(4096), b''):hash_obj.update(chunk)return hash_obj.hexdigest()def verify_integrity(self, expected_hash):"""验证文件的完整性"""calculated_hash = self.calculate_sha256()print(f"计算得到的 SHA-256 哈希值: {calculated_hash}")return calculated_hash == expected_hash# 示例使用
file_verifier = FileIntegrityVerifier("example.txt")
expected_hash = "d47a8a..."if file_verifier.verify_integrity(expected_hash):print("文件完整性验证通过!")
else:print("文件可能已被篡改!")
总结

本文详细介绍了 SHA-2 算法的原理和 Python 实现,并提供了一个基于 SHA-256 的文件完整性验证示例。SHA-256 是一个安全性强、应用广泛的哈希算法,在信息安全中起着关键作用。了解其实现和应用有助于更好地掌握加密和安全技术。

这篇关于Python 实现 SHA-2 数字摘要签名算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131951

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM