NASA数据集:ASTER全球数字海拔模型(GTEM)V003

2024-09-02 10:20

本文主要是介绍NASA数据集:ASTER全球数字海拔模型(GTEM)V003,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ASTER Digital Elevation Model V003

简介

ASTER全球数字海拔模型(GTEM)第3版(ASTG TM)提供了地球陆地区域的全球数字海拔模型(TEM),空间分辨率为1角秒(赤道处水平位置约30米)。ASTER GTEM数据产品的开发是美国国家航空航天局(NASA)和日本经济产业省(METI)之间的合作成果。ASTER GTEM数据产品由东京的传感器信息实验室公司(SILC)创建。ASTER GTEM第3版数据产品是根据对整个ASTER 1A级(https://doi.org/10.5067/ASTER/ASTER/AST_L1A.003)档案的自动处理创建的,该档案是在2000年3月1日至2013年11月30日期间获取的场景。使用立体相关来生成超过一百万个基于单个场景的ASTER数字元,并对其应用了云掩蔽。所有云屏蔽的数字元和非云屏蔽的数字元都被堆叠。删除了剩余坏值和离群值。在数据堆叠有限的地区,使用了几个现有的参考数字元来补充ASTER数据以纠正剩余异常。对选定的数据进行平均以创建最终像素值,然后将数据分割为1度纬度乘1度经度的区块,并具有一个像素重叠。为了纠正水体表面的海拔值,还生成了ASTER全球水体数据库(ASTWBD)(https://doi.org/10.5067/ASTER/ASTWBD.001)第1版数据产品。ASTER GTEM的地理覆盖范围从北纬83°延伸到南纬83°。每个图块以GeoTivf格式分布,并投影在1984年世界大地测量系统(WGS 84)/1996年地球引力模型(EGM 96)大地水准面上。该系列中的22,912块瓷砖中的每一块都至少包含0.01%的土地面积。ASTER GTEM产品中提供了用于TEM和场景数(NUM)的层。

ASTER GTEM产品中提供了用于TEM和场景数(NUM)的层。NUM层指示每个像素处理的场景数量以及数据来源。虽然ASTER GTEM第3版数据产品比第2版提供了重大改进,但建议用户该产品仍然可能包含异常和伪影,这将降低其对某些应用程序的可用性。与之前版本相比的改进/变化·扩大收购覆盖范围,将无云输入场景的数量从版本2的约150万个增加到版本3的约188万个场景。·在水体处理中实现河流与湖泊的分离。·最小水体检测面积从1平方公里降至0.2平方公里。

摘要

Terra高级星载热发射和反射辐射计(ASTER)全球数字海拔模型(GTEM)第3版(ASTG TM)提供了地球陆地区域的全球数字海拔模型(TEM),空间分辨率为1角秒(赤道处水平位置约30米)。 ASTER GTEM数据产品的开发是美国国家航空航天局(NASA)和日本经济产业省(METI)之间的合作成果。ASTER GTEM数据产品由东京的传感器信息实验室公司(SILC)创建。 ASTER GTEM第3版数据产品是根据2000年3月1日至2013年11月30日期间获取的整个ASTER 1A级场景档案的自动化处理创建的。使用立体相关来生成超过一百万个基于单个场景的ASTER数字元,并对其应用了云掩蔽。所有云屏蔽的数字元和非云屏蔽的数字元都被堆叠。删除了剩余坏值和离群值。在数据堆叠有限的地区,使用了几个现有的参考数字元来补充ASTER数据以纠正剩余异常。对选定的数据进行平均以创建最终像素值,然后将数据分割为1度纬度乘1度经度的区块,并具有一个像素重叠。为了纠正水体表面的海拔值,还生成了ASTER全球水体数据库(ASTWBD)第1版数据产品。

ASTER GTEM的地理覆盖范围从北纬83°延伸到南纬83°。每个磁贴都通过NASA Earthdata Search以云优化的地理Tivf(COG)和NetCTF 4格式分布,并通过LP DAAC数据池以标准的地理Tivf格式分布。数据预测在1984年世界大地测量系统(WGS 84)/1996年地球引力模型(EGM 96)大地水准面上。该系列中的22,912块瓷砖中的每一块都至少包含0.01%的土地面积。 ASTER GTEM产品中提供了用于TEM和场景数(NUM)的层。NUM层指示每个像素处理的场景数量以及数据来源。 虽然ASTER GTEM第3版数据产品比第2版提供了重大改进,但建议用户该产品仍然可能包含异常和伪影,这将降低其对某些应用程序的可用性。

Collection

CharacteristicDescription
CollectionTerra ASTER
DOI10.5067/ASTER/ASTGTM.003
File Size~25 MB
Temporal ResolutionMulti-Year
Temporal Extent2000-03-01 to 2013-11-30
Spatial ExtentGlobal
Coordinate SystemGeographic Latitude and Longitude
DatumWGS84/EGM96
File FormatGeoTIFF or netCDF-4
Geographic Dimensions1 degree lat x 1 degree lon

Granule

CharacteristicDescription
Number of Science Dataset (SDS) Layers2
Columns/Rows3601 x 3601
Pixel Size30 m
SDS NameDescriptionUnitsData TypeFill ValueNo Data ValueValid RangeScale Factor
DEMDigital Elevation ModelMeters16-bit signed integer-9999N/A-500 to 9000 (0 at sea level)N/A
NUM¹Number of scenesNumber16-bit signed integerN/AN/A0 to 250N/A

¹The contents of the NUM file indicate number of DEM tiles used and the source of the data.

Reference Data for Number of Scenes Layer

ValueDescription
0-50GDEM V3 (0 to 50+ scenes)¹
60-110GDEM V2 (0 to 50+ scenes)¹
131-184PRISM (1 to 54 scenes)
201-223SRTM (1 to 23 swaths)
231SRTM V3 from initial GDEM V3
232SRTM V2 from initial GDEM V3
233SRTM V2 from GDEM V2
234SRTM with NGA fill from GDEM V2
241NED from GDEM V2 (USA)
242NED from initial GDEM V3 (USA)
243CDED from GDEM V2 (Canada)
244CDED from initial GDEM V3 (Canada)
245Alaska DEM from GDEM V2
246Alaska DEM from initial GDEM V3
250Interpolated

¹ 0 = Unspecified

List of abbreviations: PRISM = Advanced Land Observing Satellite (ALOS) Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), SRTM = Shuttle Radar Topography Mission, NGA = National Geospatial-Intelligence Agency, NED = United States Geological Survey (USGS) National Elevation Dataset, CDED = Canadian Digital Elevation Data, Alaska DEM = USGS 3D Elevation Program (3DEP) Alaska DEM

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="AST14DEM",cloud_hosted=True,bounding_box=(-180.0, -83.0, 180.0, 83.0),temporal=("2000-03-06", "2013-12-10"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2024-08-27 from https://doi.org/10.5067/ASTER/ASTGTM.003

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集:ASTER全球数字海拔模型(GTEM)V003的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129695

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文