NASA数据集:ASTER全球数字海拔模型(GTEM)V003

2024-09-02 10:20

本文主要是介绍NASA数据集:ASTER全球数字海拔模型(GTEM)V003,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ASTER Digital Elevation Model V003

简介

ASTER全球数字海拔模型(GTEM)第3版(ASTG TM)提供了地球陆地区域的全球数字海拔模型(TEM),空间分辨率为1角秒(赤道处水平位置约30米)。ASTER GTEM数据产品的开发是美国国家航空航天局(NASA)和日本经济产业省(METI)之间的合作成果。ASTER GTEM数据产品由东京的传感器信息实验室公司(SILC)创建。ASTER GTEM第3版数据产品是根据对整个ASTER 1A级(https://doi.org/10.5067/ASTER/ASTER/AST_L1A.003)档案的自动处理创建的,该档案是在2000年3月1日至2013年11月30日期间获取的场景。使用立体相关来生成超过一百万个基于单个场景的ASTER数字元,并对其应用了云掩蔽。所有云屏蔽的数字元和非云屏蔽的数字元都被堆叠。删除了剩余坏值和离群值。在数据堆叠有限的地区,使用了几个现有的参考数字元来补充ASTER数据以纠正剩余异常。对选定的数据进行平均以创建最终像素值,然后将数据分割为1度纬度乘1度经度的区块,并具有一个像素重叠。为了纠正水体表面的海拔值,还生成了ASTER全球水体数据库(ASTWBD)(https://doi.org/10.5067/ASTER/ASTWBD.001)第1版数据产品。ASTER GTEM的地理覆盖范围从北纬83°延伸到南纬83°。每个图块以GeoTivf格式分布,并投影在1984年世界大地测量系统(WGS 84)/1996年地球引力模型(EGM 96)大地水准面上。该系列中的22,912块瓷砖中的每一块都至少包含0.01%的土地面积。ASTER GTEM产品中提供了用于TEM和场景数(NUM)的层。

ASTER GTEM产品中提供了用于TEM和场景数(NUM)的层。NUM层指示每个像素处理的场景数量以及数据来源。虽然ASTER GTEM第3版数据产品比第2版提供了重大改进,但建议用户该产品仍然可能包含异常和伪影,这将降低其对某些应用程序的可用性。与之前版本相比的改进/变化·扩大收购覆盖范围,将无云输入场景的数量从版本2的约150万个增加到版本3的约188万个场景。·在水体处理中实现河流与湖泊的分离。·最小水体检测面积从1平方公里降至0.2平方公里。

摘要

Terra高级星载热发射和反射辐射计(ASTER)全球数字海拔模型(GTEM)第3版(ASTG TM)提供了地球陆地区域的全球数字海拔模型(TEM),空间分辨率为1角秒(赤道处水平位置约30米)。 ASTER GTEM数据产品的开发是美国国家航空航天局(NASA)和日本经济产业省(METI)之间的合作成果。ASTER GTEM数据产品由东京的传感器信息实验室公司(SILC)创建。 ASTER GTEM第3版数据产品是根据2000年3月1日至2013年11月30日期间获取的整个ASTER 1A级场景档案的自动化处理创建的。使用立体相关来生成超过一百万个基于单个场景的ASTER数字元,并对其应用了云掩蔽。所有云屏蔽的数字元和非云屏蔽的数字元都被堆叠。删除了剩余坏值和离群值。在数据堆叠有限的地区,使用了几个现有的参考数字元来补充ASTER数据以纠正剩余异常。对选定的数据进行平均以创建最终像素值,然后将数据分割为1度纬度乘1度经度的区块,并具有一个像素重叠。为了纠正水体表面的海拔值,还生成了ASTER全球水体数据库(ASTWBD)第1版数据产品。

ASTER GTEM的地理覆盖范围从北纬83°延伸到南纬83°。每个磁贴都通过NASA Earthdata Search以云优化的地理Tivf(COG)和NetCTF 4格式分布,并通过LP DAAC数据池以标准的地理Tivf格式分布。数据预测在1984年世界大地测量系统(WGS 84)/1996年地球引力模型(EGM 96)大地水准面上。该系列中的22,912块瓷砖中的每一块都至少包含0.01%的土地面积。 ASTER GTEM产品中提供了用于TEM和场景数(NUM)的层。NUM层指示每个像素处理的场景数量以及数据来源。 虽然ASTER GTEM第3版数据产品比第2版提供了重大改进,但建议用户该产品仍然可能包含异常和伪影,这将降低其对某些应用程序的可用性。

Collection

CharacteristicDescription
CollectionTerra ASTER
DOI10.5067/ASTER/ASTGTM.003
File Size~25 MB
Temporal ResolutionMulti-Year
Temporal Extent2000-03-01 to 2013-11-30
Spatial ExtentGlobal
Coordinate SystemGeographic Latitude and Longitude
DatumWGS84/EGM96
File FormatGeoTIFF or netCDF-4
Geographic Dimensions1 degree lat x 1 degree lon

Granule

CharacteristicDescription
Number of Science Dataset (SDS) Layers2
Columns/Rows3601 x 3601
Pixel Size30 m
SDS NameDescriptionUnitsData TypeFill ValueNo Data ValueValid RangeScale Factor
DEMDigital Elevation ModelMeters16-bit signed integer-9999N/A-500 to 9000 (0 at sea level)N/A
NUM¹Number of scenesNumber16-bit signed integerN/AN/A0 to 250N/A

¹The contents of the NUM file indicate number of DEM tiles used and the source of the data.

Reference Data for Number of Scenes Layer

ValueDescription
0-50GDEM V3 (0 to 50+ scenes)¹
60-110GDEM V2 (0 to 50+ scenes)¹
131-184PRISM (1 to 54 scenes)
201-223SRTM (1 to 23 swaths)
231SRTM V3 from initial GDEM V3
232SRTM V2 from initial GDEM V3
233SRTM V2 from GDEM V2
234SRTM with NGA fill from GDEM V2
241NED from GDEM V2 (USA)
242NED from initial GDEM V3 (USA)
243CDED from GDEM V2 (Canada)
244CDED from initial GDEM V3 (Canada)
245Alaska DEM from GDEM V2
246Alaska DEM from initial GDEM V3
250Interpolated

¹ 0 = Unspecified

List of abbreviations: PRISM = Advanced Land Observing Satellite (ALOS) Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), SRTM = Shuttle Radar Topography Mission, NGA = National Geospatial-Intelligence Agency, NED = United States Geological Survey (USGS) National Elevation Dataset, CDED = Canadian Digital Elevation Data, Alaska DEM = USGS 3D Elevation Program (3DEP) Alaska DEM

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="AST14DEM",cloud_hosted=True,bounding_box=(-180.0, -83.0, 180.0, 83.0),temporal=("2000-03-06", "2013-12-10"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2024-08-27 from https://doi.org/10.5067/ASTER/ASTGTM.003

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集:ASTER全球数字海拔模型(GTEM)V003的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129695

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库