如何排查系统的性能瓶颈点?

2024-09-02 09:08
文章标签 系统 性能 排查 瓶颈

本文主要是介绍如何排查系统的性能瓶颈点?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“朱小厮的博客”,选择“设为星标”

后台回复"书",获取

后台回复“k8s”,可领取k8s资料

梳理系统的性能瓶颈点这件事应该不是一件简单的事情,需要针对不同设计的系统来进行单独分析。

首先一套完整可用的系统应该是有ui界面的(这里强调的是一套完整的,可用的系统,而并不是指单独的一个中台系统),系统分为了前端模块和后端模块。

这里由于我个人的擅长领域更多是处于后端模块,所以对于系统的瓶颈点梳理我会从后端进行分析。

这里我结合常用的nginx+tomcat+redis+mysql这类常见架构进行分析:

请求入口 所有的请求打入到后台的服务当中,首先需要考虑的一个点就是:

带宽因素:

假设有200m的流量同时请求进入服务器,但是带宽只有1m,这么来算光是接收这批数据量信息也要消耗大约200s的时间。带宽可以理解为在指定时间内从一端请求到另一端的流量总量。而且局域网和广域网的带宽计算其实也是不一样的,

服务器的ulimit

通常我们使用的线上服务器都是centos系列,这里我列举centos7相关的系统配置:ulimit配置 查看服务器允许的最大打开文件数目(linux系统中设计概念为一切皆文件) 通常如果我们的java程序需要增大一些socket的链接数目,可以通过调整ulimit 里面的open参数进行配置。

 [root@izwz9ic9ggky8kub9x1ptuz ~]# ulimit -a | grep open
open files                      (-n) 1000

查看用户的最大进程数目

[root@izwz9ic9ggky8kub9x1ptuz ~]# ulimit -a | grep user
max user processes              (-u) 7284

相关的配置存放在了/etc/security/limits.conf文件中。

系统的一些内核参数配置

如果是在一些压力测试场景中,我们通常会预见到这种报错:

apr_socket_recv: Connection reset by peer (54)

通常这种情况是因为系统内部的一些防范参数设置导致的,需要调整/etc/sysctl.conf 文件中的相关参数:

net.ipv4.tcp_syncookies = 0
#当并发请求数目超过了1000之后,服务器自身可能会认为是收到了syn泛洪攻击,但对于高并发系统,要禁用此设置net.ipv4.tcp_max_syn_backlog
#参数决定了SYN_RECV状态队列的数量,一般默认值为512或者1024,即超过这个数量,系统将不再接受新的TCP连接请求,一定程度上可以防止系统资源耗尽。可根据情况增加该值以接受更多的连接请求。net.ipv4.tcp_tw_recycle
#参数决定是否加速TIME_WAIT的sockets的回收,默认为0。net.ipv4.tcp_tw_reuse
#参数决定是否可将TIME_WAIT状态的sockets用于新的TCP连接,默认为0。net.ipv4.tcp_max_tw_buckets
#参数决定TIME_WAIT状态的sockets总数量,可根据连接数和系统资源需要进行设置。

对于防范参数还可以如下修改查看:

cd /proc/sys/net/ipv4
echo "0" > tcp_syncookie

通常企业中使用的都是nginx进行接收请求,然后进行负载均衡转发。在nginx层里面会有几个核心参数配置:最大连接数,最大并发访问数

#指定同一个ip的每次请求数量都限制为10次
limit_conn_zone $binary_remote_addr zone=perip:10m;
limit_conn perip 10

Tomcat部分分析

Tomcat支持三种接收请求的处理方式:BIO、NIO、APR 。

1、Bio方式,阻塞式I/O操作即使用的是传统Java I/O操作,Tomcat7以下版本默认情况下是以bio模式运行的,由于每个请求都要创建一个线程来处理,线程开销较大,不能处理高并发的场景,在三种模式中性能也最低

2、Nio方式,是Java SE 1.4及后续版本提供的一种新的I/O操作方式(即java.nio包及其子包),是一个基于缓冲区、并能提供非阻塞I/O操作的Java API,它拥有比传统I/O操作(bio)更好的并发运行性能。tomcat 8版本及以上默认nio模式

3、apr模式,简单理解,就是从操作系统级别解决异步IO问题,大幅度的提高服务器的处理和响应性能, 也是Tomcat运行高并发应用的首选模式。启用这种模式稍微麻烦一些,需要安装一些依赖库, 而apr的本质就是使用jni技术调用操作系统底层的IO接口,所以需要提前安装所需要的依赖,首先是需要安装openssl和apr

tomcat连接参数调整

在tomcat中有这么一段经典的配置参数:

<Connector port="80" maxHttpHeaderSize="8192"maxThreads="4000" minSpareThreads="1000" maxSpareThreads="2000"enableLookups="false" redirectPort="8443" acceptCount="2000"connectionTimeout="20000" disableUploadTimeout="true" /

maxThreads表示tomcat最多可以创建多少个线程来处理请求。

minSpareThread表示tomcat一开始启动的时候会创建多少个线程,即使是闲着也会创建。

maxSpareThread表示tomcat创建的最大闲置线程数目。一旦tomcat创建的线程数目达到这个瓶颈,那么就需要进行线程的回收了。

connectionTimeout表示连接的超时时长。

假设我们同时有1000个请求并发访问,但是一台tomcat的maxThreads只设置为了500,那么此时就会出现请求拥塞的情况,也就是瓶颈点之一。

Redis部分性能瓶颈分析

一些大key的查询,导致网络出现拥塞情况

例如说往一个list集合中存储了50m的数据,一旦发生list全量查询,同时又有其他指令在进行访问的时候,就容易会导致网络堵塞。因为redis的设计为单线程处理请求,所以其他指令发送到redis服务端的时候,都需要等待redis将之前的任务处理完毕之后才能继续执行。

线上环境出现了一些”违规操作“

比较常见的违规操作:批量执行keys指令

在redis处于高qps的状态下,随意一个keys指令都可能是致命的。keys指令的时间复杂度是O(n)级别,容易导致一时间系统的卡顿。

内存空间不足

当redis处于内存空间不足的时候,基本就是整个系统处于瘫痪作用。因此我们在对每个存储在redis中的数值都需要设置一个合理的过期时间,以及需要思考存储数据的体积大小。

MySQL部分性能瓶颈分析

通常我们在分析sql查询方面都容易出现一个误区,就是上来直接进行explian分析,但是却忽略了系统的运作上下文环境。

假设有一张t_user表,已经存储了几千万的数据,并且也对用户的id进行了索引建立,但是sql执行速度依旧是超过1s时长,这个时候就需要换一种思路进行分析了。

例如从表的拆分方面进行思考,是否该对表进行横向拆分,拆解为t_user_01,t_user_02......

以下是我总结的一些对于数据库层面可能出现性能瓶颈的几点总结:

1.锁

排查是否会存在锁表的情况导致数据库响应缓慢。

2.sql查询还有优化空间,有待完善

通常我们对于sql的执行分析都会使用explain命令进行查看:

这里我贴出了一张关于explain的常用参数含义表供大家参考:


3.查询出的数据量过大

例如说一条sql直接查询了全表的数据信息量,直接占满了网络带宽,因此访问时候出现了网络拥塞。

4.硬件设备不足

例如在面对一些高qps的查询时候,数据库本身的机器硬件配置较低,自然处理速度会比较慢。

5.自适应hash出现锁冲突

AHI是innodb存储引擎特有的属性,innodb存储引擎会针对索引数据的查询结果做自适应的优化,当某些特定的索引查询频率特别高的时候会自动为其建立hash索引,从而提升查询的效率。相比于B+Tree索引来说,hash索引能够大大减少对于io的访问次数,“一击命中” 查询数据,具备更加高效的性能,而且hash索引是由mysql内部自动适配的,无需dba在外部做过多的干预。

早期版本的hash索引是采用了单锁模式来防范并发访问问题,这对于程序自身的一个运作高效性有一定的”折扣“,后期通过对hash索引进行了分区,不同页的数据用不同的hashtable,每个分区有对应的锁来做并发访问的预防。

如果某天你发现了有很多线程都被堵塞在了RW-latches的时候,有可能就是因为hash索引的并发访问负载过高导致的堵塞,这个时候可以通过增大hash索引的分区参数,或者关闭自适应hash索引特性来进行处理。

想知道更多?描下面的二维码关注我

后台回复"技术",加入技术群

后台回复“k8s”,可领取k8s资料

【精彩推荐】

  • 原创|OpenAPI标准规范

  • 中台不是万能药,关于中台的思考和尝试

  • ClickHouse到底是什么?为什么如此牛逼!

  • 原来ElasticSearch还可以这么理解

  • 面试官:InnoDB中一棵B+树可以存放多少行数据?

  • 微服务下如何解耦?对于已经紧耦合下如何重构?

  • 如何构建一套高性能、高可用、低成本的视频处理系统?

  • 架构之道:分离业务逻辑和技术细节

  • 星巴克不使用两阶段提交

点个赞+在看,少个 bug ????

这篇关于如何排查系统的性能瓶颈点?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129559

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存