从FasterTransformer源码解读开始了解大模型(2.4)代码通读05

2024-09-02 04:36

本文主要是介绍从FasterTransformer源码解读开始了解大模型(2.4)代码通读05,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从FasterTransformer源码解读开始了解大模型(2.4)代码解读05-ContextDecoder的前向01

写在前面的话

ContextDecoder部分是用于处理输入部分的组件层,在这一层中,会对所有输入的input ids进行处理,计算Attention(在此过程中还会生成KV Cache),计算FFN,在完成所有输入部分计算之后,会生成输出部分的第一个token

零、ContextDecoder的buffer和功能函数

在src/fastertransformer/models/multi_gpu_gpt/ParallelGptContextDecoder.cc这个文件中包含了整个gpt的ContextDecoder的函数和组成结构。从25到85行的initial函数中,可以初步看见整个ContextDecoder的整体结构:

template<typename T>
void ParallelGptContextDecoder<T>::initialize()
{FT_LOG_DEBUG(__PRETTY_FUNCTION__);self_attention_layer_ = new TensorParallelGptContextAttentionLayer<T>(max_batch_size_,max_seq_len_,head_num_,size_per_head_,tensor_para_,stream_,cublas_wrapper_,allocator_,true,is_free_buffer_after_forward_,is_qk_buf_float_,sparse_,int8_mode_,custom_all_reduce_comm_,enable_custom_all_reduce_);bool use_gated_activation = activation_type_ == ActivationType::GeGLU || activation_type_ == ActivationType::ReGLU;size_t max_inter_size     = has_adapters_ ? std::max(inter_size_, adapter_inter_size_) : inter_size_;if (activation_type_ == ActivationType::Gelu || activation_type_ == ActivationType::GeGLU) {ffn_layer_ = new TensorParallelGeluFfnLayer<T>(max_batch_size_,max_seq_len_,head_num_,size_per_head_,expert_num_,  // expert_nummax_inter_size,tensor_para_,stream_,cublas_wrapper_,allocator_,true,is_free_buffer_after_forward_,sparse_,int8_mode_,use_gated_activation,custom_all_reduce_comm_,enable_custom_all_reduce_);}else if (activation_type_ == ActivationType::Relu || activation_type_ == ActivationType::ReGLU) {ffn_layer_ = new TensorParallelReluFfnLayer<T>(max_batch_size_,max_seq_len_,head_num_,size_per_head_,expert_num_,  // expert_nummax_inter_size,tensor_para_,stream_,cublas_wrapper_,allocator_,true,is_free_buffer_after_forward_,sparse_,int8_mode_,use_gated_activation,custom_all_reduce_comm_,enable_custom_all_reduce_);}
}

主要由一个Attention层和一个ffn层组成,Attention层主要负责进行注意力得分计算,而FFN层则主要负责进行矩阵乘进行升降维,并在高维时进行激活。在initial函数中,由于根据模型配置可能会调用不同的激活函数,所以这里留了不同激活函数的FFN。

在93到147行,则是对ContextDecoder中用到的buffer进行专门的分配。其中一些buffer可以从变量名看出它的具体用途,比如decoder_normed_input,用于存储归一化后的input输入,normed_self_attn_output用于存储归一化后的attention模块输出。而149到183,则是对上面allocate后的buffer进行释放的freebuffer函数。

在185到212行,是一系列用于layer id判断的函数。为什么要这么做?我们之前有介绍过PP架构,即Pipeline Parallel流水线并行,会将一个完整模型的多个层划分给不同的机器节点(假设我们这里有一个80层的llama2-70b,那么我们可以考虑部署4台gpu机器,每个机器负责20层,这样就可以将单卡上放不下的模型放在多卡上执行了),在185~212行的这些模型,就是判断当前节点所需要运行的模型实际层数的。

在215到300行,则是函数的构造函数和析构函数,这里不进行赘述。

一、forward前向部分之共享上下文

从303行开始,则是真正的前向推理部分。

首先,我们计算所需要的输出输入,都按照tensor的格式在output_tensors/input_tensors里写好了,从327行到349行,将所需要的decoder输入,mask输入,输入长度,输出buffer,以及kvcache等等buffer给取出来。

有一个很值得注意的技术在358和344行,叫做共享context,解释起来也比较简单,在一些对话模型中,用户的输入往往会有一个固定前缀,那么这些前缀在计算注意力时其实共享前缀的部分都是重复计算,那么就可以利用类似前缀树的方式进行管理,每当有共享前缀的输入进入时,就只计算前缀树的叶子的部分,主干部分就可以利用之前已经计算好的部分了
在这里插入图片描述

在359行是一个处理前缀的kernel,其具体实现在gpt_kernels.cc的736到770行

template<typename T>
__global__ void compact_inputs(T*         compact_input,T*         compact_attention_mask,int*       compact_input_lengths,const T*   decoder_input,const T*   decoder_mask,const int* input_lengths,const int* compact_idx,size_t     compact_size,size_t     seq_len,size_t     hidden_dimension)
{const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;if (global_idx < compact_size * seq_len * hidden_dimension) {const int h_id     = global_idx % hidden_dimension;const int seq_id   = (global_idx / hidden_dimension) % seq_len;const int batch_id = global_idx / (hidden_dimension * seq_len);compact_input[global_idx] = decoder_input[(compact_idx[batch_id] * seq_len + seq_id) * hidden_dimension + h_id];}if (global_idx < compact_size * seq_len * seq_len) {const int seq1_id  = global_idx % seq_len;const int seq2_id  = (global_idx / seq_len) % seq_len;const int batch_id = global_idx / (seq_len * seq_len);compact_attention_mask[global_idx] =decoder_mask[(compact_idx[batch_id] * seq_len + seq2_id) * seq_len + seq1_id];}if (global_idx < compact_size) {compact_input_lengths[global_idx] = input_lengths[compact_idx[global_idx]];}
}

可以看见,主要的目的就是为了从输入的tensor中取出并不属于前缀部分的input以及mask等,并存储在compat buffer中,这是一个纯IO类kernel

二、forward前向部分之attention计算前的准备

让我们回到ContextDecoder中,我们可以简化思考,考虑不存在前缀树的情况,继续看forward函数。

在一系列做好kvcache和attention参数的计算后,在406行进入了一个整体ite的循环(这里是因为如果batch太大,每次处理的max_batch又有限的话,需要拆开batch多次循环)。在409行,如果有padding的存在,由于attention计算是和位置息息相关的,所以需要考虑padding的影响,处理好pad位置后,421行再开始整个layers层数循环。428行到455行,为了考虑到当前层数是否是第一层或最后一层,需要对buffer进行不同的设置,在457行,如果当前节点是PP并行的非节点,还需要通过nccl通信获取上一个节点的计算结果。当然,如果还有tp划分的话,还需要做AllReduce。

在496行,是真正为attention层做输入参数的配置,包含一些必要的输入以及mask,attention类型,还有用于调试信息的layer_id信息等等。在523行,如果配置了alibi那么还需要对输入插入alibi参数。

TensorMap self_attention_input_tensors{{"input_query",Tensor{MEMORY_GPU,activation_in_type,{h_token_num, hidden_units_},layernorm_type_ == LayerNormType::pre_layernorm ? decoder_normed_input_ : decoder_input}},{"attention_mask",Tensor{MEMORY_GPU,data_type,{local_batch_size, 1, seq_len, seq_len},attention_ptr + local_batch_size * ite * seq_len * seq_len}},{"attention_type", Tensor{MEMORY_CPU, TYPE_VOID, {1}, &attention_type}},{"is_final_layer", Tensor{MEMORY_CPU, TYPE_BOOL, {1}, &is_final}},{"layer_id", Tensor{MEMORY_CPU, TYPE_INT32, {(size_t)1}, &l}}};if (is_unpadded_mha) {self_attention_input_tensors.insert("padding_offset",Tensor{MEMORY_GPU, TYPE_INT32, {h_token_num}, padding_offset_});self_attention_input_tensors.insert("cu_seqlens", Tensor{MEMORY_GPU, TYPE_INT32, {size_t(local_batch_size + 1)}, cu_seqlens_});}/* if (dynamic_quant_) { *//*     self_attention_input_tensors.insert("attention_query_dynamic_scale", *//*         Tensor{MEMORY_GPU, TYPE_FP32, {h_token_num}, attention_query_dynamic_scale_}); *//* } */if (input_tensors->isExist("linear_bias_slopes")) {self_attention_input_tensors.insert("linear_bias_slopes", input_tensors->at("linear_bias_slopes"));}

在539行,真正需要获取的输出其实很少,一个用于接下来做add_bias_norm的主要输出,以及attention计算所产生的的kv cache,之后,直接调用attention层进行了前向计算推理。

TensorMap self_attention_output_tensors{{"hidden_features",Tensor{MEMORY_GPU, activation_out_type, {h_token_num, hidden_units_}, self_attn_output_}},{"key_cache", Tensor{MEMORY_GPU, data_type, self_k_cache_size, k_cache_ptr}},{"value_cache", Tensor{MEMORY_GPU, data_type, self_v_cache_size, v_cache_ptr}}};self_attention_layer_->forward(&self_attention_output_tensors, &self_attention_input_tensors, &layer_weight->self_attention_weights);

下一回预告

下一回我们会继续介绍在ContextDecoder中,attention计算完成之后,还需要做哪些工作,会对layernorm以及ffn的调用流程进行一下讲解

这篇关于从FasterTransformer源码解读开始了解大模型(2.4)代码通读05的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129009

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计