从FasterTransformer源码解读开始了解大模型(2.4)代码通读05

2024-09-02 04:36

本文主要是介绍从FasterTransformer源码解读开始了解大模型(2.4)代码通读05,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从FasterTransformer源码解读开始了解大模型(2.4)代码解读05-ContextDecoder的前向01

写在前面的话

ContextDecoder部分是用于处理输入部分的组件层,在这一层中,会对所有输入的input ids进行处理,计算Attention(在此过程中还会生成KV Cache),计算FFN,在完成所有输入部分计算之后,会生成输出部分的第一个token

零、ContextDecoder的buffer和功能函数

在src/fastertransformer/models/multi_gpu_gpt/ParallelGptContextDecoder.cc这个文件中包含了整个gpt的ContextDecoder的函数和组成结构。从25到85行的initial函数中,可以初步看见整个ContextDecoder的整体结构:

template<typename T>
void ParallelGptContextDecoder<T>::initialize()
{FT_LOG_DEBUG(__PRETTY_FUNCTION__);self_attention_layer_ = new TensorParallelGptContextAttentionLayer<T>(max_batch_size_,max_seq_len_,head_num_,size_per_head_,tensor_para_,stream_,cublas_wrapper_,allocator_,true,is_free_buffer_after_forward_,is_qk_buf_float_,sparse_,int8_mode_,custom_all_reduce_comm_,enable_custom_all_reduce_);bool use_gated_activation = activation_type_ == ActivationType::GeGLU || activation_type_ == ActivationType::ReGLU;size_t max_inter_size     = has_adapters_ ? std::max(inter_size_, adapter_inter_size_) : inter_size_;if (activation_type_ == ActivationType::Gelu || activation_type_ == ActivationType::GeGLU) {ffn_layer_ = new TensorParallelGeluFfnLayer<T>(max_batch_size_,max_seq_len_,head_num_,size_per_head_,expert_num_,  // expert_nummax_inter_size,tensor_para_,stream_,cublas_wrapper_,allocator_,true,is_free_buffer_after_forward_,sparse_,int8_mode_,use_gated_activation,custom_all_reduce_comm_,enable_custom_all_reduce_);}else if (activation_type_ == ActivationType::Relu || activation_type_ == ActivationType::ReGLU) {ffn_layer_ = new TensorParallelReluFfnLayer<T>(max_batch_size_,max_seq_len_,head_num_,size_per_head_,expert_num_,  // expert_nummax_inter_size,tensor_para_,stream_,cublas_wrapper_,allocator_,true,is_free_buffer_after_forward_,sparse_,int8_mode_,use_gated_activation,custom_all_reduce_comm_,enable_custom_all_reduce_);}
}

主要由一个Attention层和一个ffn层组成,Attention层主要负责进行注意力得分计算,而FFN层则主要负责进行矩阵乘进行升降维,并在高维时进行激活。在initial函数中,由于根据模型配置可能会调用不同的激活函数,所以这里留了不同激活函数的FFN。

在93到147行,则是对ContextDecoder中用到的buffer进行专门的分配。其中一些buffer可以从变量名看出它的具体用途,比如decoder_normed_input,用于存储归一化后的input输入,normed_self_attn_output用于存储归一化后的attention模块输出。而149到183,则是对上面allocate后的buffer进行释放的freebuffer函数。

在185到212行,是一系列用于layer id判断的函数。为什么要这么做?我们之前有介绍过PP架构,即Pipeline Parallel流水线并行,会将一个完整模型的多个层划分给不同的机器节点(假设我们这里有一个80层的llama2-70b,那么我们可以考虑部署4台gpu机器,每个机器负责20层,这样就可以将单卡上放不下的模型放在多卡上执行了),在185~212行的这些模型,就是判断当前节点所需要运行的模型实际层数的。

在215到300行,则是函数的构造函数和析构函数,这里不进行赘述。

一、forward前向部分之共享上下文

从303行开始,则是真正的前向推理部分。

首先,我们计算所需要的输出输入,都按照tensor的格式在output_tensors/input_tensors里写好了,从327行到349行,将所需要的decoder输入,mask输入,输入长度,输出buffer,以及kvcache等等buffer给取出来。

有一个很值得注意的技术在358和344行,叫做共享context,解释起来也比较简单,在一些对话模型中,用户的输入往往会有一个固定前缀,那么这些前缀在计算注意力时其实共享前缀的部分都是重复计算,那么就可以利用类似前缀树的方式进行管理,每当有共享前缀的输入进入时,就只计算前缀树的叶子的部分,主干部分就可以利用之前已经计算好的部分了
在这里插入图片描述

在359行是一个处理前缀的kernel,其具体实现在gpt_kernels.cc的736到770行

template<typename T>
__global__ void compact_inputs(T*         compact_input,T*         compact_attention_mask,int*       compact_input_lengths,const T*   decoder_input,const T*   decoder_mask,const int* input_lengths,const int* compact_idx,size_t     compact_size,size_t     seq_len,size_t     hidden_dimension)
{const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;if (global_idx < compact_size * seq_len * hidden_dimension) {const int h_id     = global_idx % hidden_dimension;const int seq_id   = (global_idx / hidden_dimension) % seq_len;const int batch_id = global_idx / (hidden_dimension * seq_len);compact_input[global_idx] = decoder_input[(compact_idx[batch_id] * seq_len + seq_id) * hidden_dimension + h_id];}if (global_idx < compact_size * seq_len * seq_len) {const int seq1_id  = global_idx % seq_len;const int seq2_id  = (global_idx / seq_len) % seq_len;const int batch_id = global_idx / (seq_len * seq_len);compact_attention_mask[global_idx] =decoder_mask[(compact_idx[batch_id] * seq_len + seq2_id) * seq_len + seq1_id];}if (global_idx < compact_size) {compact_input_lengths[global_idx] = input_lengths[compact_idx[global_idx]];}
}

可以看见,主要的目的就是为了从输入的tensor中取出并不属于前缀部分的input以及mask等,并存储在compat buffer中,这是一个纯IO类kernel

二、forward前向部分之attention计算前的准备

让我们回到ContextDecoder中,我们可以简化思考,考虑不存在前缀树的情况,继续看forward函数。

在一系列做好kvcache和attention参数的计算后,在406行进入了一个整体ite的循环(这里是因为如果batch太大,每次处理的max_batch又有限的话,需要拆开batch多次循环)。在409行,如果有padding的存在,由于attention计算是和位置息息相关的,所以需要考虑padding的影响,处理好pad位置后,421行再开始整个layers层数循环。428行到455行,为了考虑到当前层数是否是第一层或最后一层,需要对buffer进行不同的设置,在457行,如果当前节点是PP并行的非节点,还需要通过nccl通信获取上一个节点的计算结果。当然,如果还有tp划分的话,还需要做AllReduce。

在496行,是真正为attention层做输入参数的配置,包含一些必要的输入以及mask,attention类型,还有用于调试信息的layer_id信息等等。在523行,如果配置了alibi那么还需要对输入插入alibi参数。

TensorMap self_attention_input_tensors{{"input_query",Tensor{MEMORY_GPU,activation_in_type,{h_token_num, hidden_units_},layernorm_type_ == LayerNormType::pre_layernorm ? decoder_normed_input_ : decoder_input}},{"attention_mask",Tensor{MEMORY_GPU,data_type,{local_batch_size, 1, seq_len, seq_len},attention_ptr + local_batch_size * ite * seq_len * seq_len}},{"attention_type", Tensor{MEMORY_CPU, TYPE_VOID, {1}, &attention_type}},{"is_final_layer", Tensor{MEMORY_CPU, TYPE_BOOL, {1}, &is_final}},{"layer_id", Tensor{MEMORY_CPU, TYPE_INT32, {(size_t)1}, &l}}};if (is_unpadded_mha) {self_attention_input_tensors.insert("padding_offset",Tensor{MEMORY_GPU, TYPE_INT32, {h_token_num}, padding_offset_});self_attention_input_tensors.insert("cu_seqlens", Tensor{MEMORY_GPU, TYPE_INT32, {size_t(local_batch_size + 1)}, cu_seqlens_});}/* if (dynamic_quant_) { *//*     self_attention_input_tensors.insert("attention_query_dynamic_scale", *//*         Tensor{MEMORY_GPU, TYPE_FP32, {h_token_num}, attention_query_dynamic_scale_}); *//* } */if (input_tensors->isExist("linear_bias_slopes")) {self_attention_input_tensors.insert("linear_bias_slopes", input_tensors->at("linear_bias_slopes"));}

在539行,真正需要获取的输出其实很少,一个用于接下来做add_bias_norm的主要输出,以及attention计算所产生的的kv cache,之后,直接调用attention层进行了前向计算推理。

TensorMap self_attention_output_tensors{{"hidden_features",Tensor{MEMORY_GPU, activation_out_type, {h_token_num, hidden_units_}, self_attn_output_}},{"key_cache", Tensor{MEMORY_GPU, data_type, self_k_cache_size, k_cache_ptr}},{"value_cache", Tensor{MEMORY_GPU, data_type, self_v_cache_size, v_cache_ptr}}};self_attention_layer_->forward(&self_attention_output_tensors, &self_attention_input_tensors, &layer_weight->self_attention_weights);

下一回预告

下一回我们会继续介绍在ContextDecoder中,attention计算完成之后,还需要做哪些工作,会对layernorm以及ffn的调用流程进行一下讲解

这篇关于从FasterTransformer源码解读开始了解大模型(2.4)代码通读05的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129009

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可