自然语言处理(NLP)-预训练模型:别人已经训练好的模型,可直接拿来用【ELMO、BERT、ERNIE(中文版BERT)、GPT、XLNet...】

本文主要是介绍自然语言处理(NLP)-预训练模型:别人已经训练好的模型,可直接拿来用【ELMO、BERT、ERNIE(中文版BERT)、GPT、XLNet...】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

预训练模型(Pretrained model):一般情况下预训练模型都是大型模型,具备复杂的网络结构,众多的参数量,以及在足够大的数据集下进行训练而产生的模型.

在NLP领域,预训练模型往往是语言模型,因为语言模型的训练是无监督的,可以获得大规模语料,同时语言模型又是许多典型NLP任务的基础,如机器翻译,文本生成,阅读理解等,常见的预训练模型有BERT, GPT, roBERTa, transformer-XL等.

一、Embeddings from Language Model (ELMO)

在这里插入图片描述

  • 在RNN模型中,每一个Word Embedding的输出是要参考前面已经输入过的数据。所以叫做:Contextualized Word Embedding
  • 不止要考虑每个Word Embedding前文,同时还要考虑后文,所以再从句尾向句首训练。
  • 使用多层Hidder Layer后,每个词最终的 Word Embedding = 该词所有层的 Word Embedding 进行加权平均

在这里插入图片描述

二、BERT/ERNIE:Encoder of Transformer

在这里插入图片描述

  • BERT stands for “Bidirectional Encoder Representations from Transformers”,用于非中文语言;
  • ERNIE stands for “Enhanced Representation through Knowledge Integration ”,用于中文;
  • 中文使用“字”作为输入,英文使用单词作为输入。

三、 Generative Pre-Training (GPT):Decoder of Transformer

在这里插入图片描述




参考资料:
BERT模型详解
BERT代码阅读
XLNet原理
XLNet代码分析
XLNet代码分析(二)
XLNet代码分析(三)
XLNet代码分析(四)
一文读懂Embedding的概念,以及它和深度学习的关系
自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT)
【Semantic Embedding】: CDSSM(CLSM)模型
【Semantic Embedding】: BERT模型3
semantic embedding学习的三种损失函数
Contextual Word Representations:A Contextual Introduction
中文任务全面超越BERT:百度正式发布NLP预训练模型ERNIE
ERNIE: Enhanced Representation through Knowledge Integration
BERT Rediscovers the Classical NLP Pipeline
What Do You Learn From Context? Probing For Sentence Structure In Contextualized Word Representations
Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT
Language Models are Unsupervised Multitask Learners
Talk to Transformer
XLNET
roBERT

这篇关于自然语言处理(NLP)-预训练模型:别人已经训练好的模型,可直接拿来用【ELMO、BERT、ERNIE(中文版BERT)、GPT、XLNet...】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128928

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路