人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】

本文主要是介绍人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】

  • 一、模型误差与模型复杂度的关系
    • 1、梯度下降法
    • 2、泛化误差
      • 2.1 方差
      • 2.2 偏差
      • 2.3 噪声
      • 2.4 泛化误差的拆分
    • 3、偏差-方差窘境(bias-variance dilemma)
    • 4、Bias-Variance Tradeoff 理论意义
    • 5、K折交叉验证与Bias-Variance关系
  • 二、欠拟合&过拟合
    • 1、定义
    • 2、原因以及解决办法
      • 2.1 欠拟合、过拟合的判断
      • 2.2 欠拟合原因以及解决办法
      • 2.3 “回归算法”过拟合原因以及解决办法
  • 二、过拟合的检测
  • 三、过拟合解决方案
    • 1、提供更多的训练数据
    • 2、降低模型复杂度
      • 2.1 Shallow network
      • 2.2 Regularization/正则化/Weight Decay
        • 2.2.1 L1-norm(sklearn.linear_model.LassoCV)
        • 2.2.2 L2-norm(sklearn.linear_model.RidgeCV)
        • 2.2.3 Elastic Net(sklearn.linear_model.ElasticNetCV)
    • 3、Data Argumentation/数据增强
    • 4、Dropout
      • 4.1 在训练集Training模型
      • 4.2 在测试集Testing模型
      • 4.3 “Dropout” v.s. “Bagging”
      • 4.4 取平均的作用
      • 4.5 减少神经元之间复杂的共适应关系
      • 4.6 Dropout类比于性别生物进化中的角色
    • 5、Early Stopping
      • 5.1 目的
      • 5.2 原理
      • 5.3 为什么能减小过拟合
      • 5.4 Early Stopping的缺点

一、模型误差与模型复杂度的关系

1、梯度下降法

模型的评估与调优的目的就是让模型的损失函数尽可能地减小。所有损失函数只要可导,都可以使用梯度下降法来找到损失函数极小值处对应的参数。

在这里插入图片描述
在这里插入图片描述

2、泛化误差

泛化误差:以回归任务为例, 学习算法的平方预测误差期望为:

这篇关于人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128922

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro