NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】

本文主要是介绍NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《TextCNN 原始论文:Convolutional Neural Networks for Sentence Classification》

一、概述

1、TextCNN 是什么?

我们之前提前CNN时,通常会认为是属于CV领域,用于计算机视觉方向的工作,但是在2014年,Yoon Kim针对CNN的输入层做了一些变形,提出了文本分类模型textCNN。与传统图像的CNN网络相比, textCNN 在网络结构上没有任何变化(甚至更加简单了), 从图一可以看出textCNN 其实只有一层卷积,一层max-pooling, 最后将输出外接softmax 来n分类。

在这里插入图片描述

在这里插入图片描述
与图像当中CNN的网络相比,textCNN 最大的不同便是在输入数据的不同:

  • 图像是二维数据, 图像的卷积核是从左到右, 从上到下进行滑动来进行特征抽取。
  • 自然语言是一维数据, 虽然经过word-embedding 生成了二维向量,但是对词向量做从左到右滑动来进行卷积没有意义. 比如 “今天” 对应的向量[0, 0, 0, 0, 1], 按窗口大小为 1 × 2 1× 2 1×2 从左到右滑动得到[0,0], [0,0], [0,0], [0, 1]这四个向量, 对应的都是"今天"这个词汇, 这种滑动没有帮助。

TextCNN的成功, 不是网络结构的成功, 而是通过引入已经训练好的词向量来在多个数据集上达到了超越benchmark 的表现,进一步证明了构造更好的embedding, 是提升NLP各项任务的关键

2、TextCNN 的优势

  1. TextCNN最大优势网络结构简单 ,在模型网络结构如此简单的情况下,通过引入已经训练好的词向量依旧有很不错的效果,在多项数据数据集上超越benchmark。

  2. 网络结构简单导致参数数目少, 计算量少, 训练速度快,在单机单卡的v100机器上,训练165万数据, 迭代26万步,半个小时左右可以收敛。

二、TextCNN 模型

1、分词&构建词向量

如下图所示, textCNN 首先将 “今天天气很好,出来玩” 分词成"今天/天气/很好/,/出来/玩, 通过word2vec或者GLOV 等embedding 方式将每个词成映射成一个5维(维数可以自己指定)词向量, 如 “今天” -> [0,0,0,0,1], “天气” ->[0,0,0,1,0], “很好” ->[0,0,1,0,0]等等。

在这里插入图片描述
这样做的好处主要是将自然语言数值化,方便后续的处理。

  • 从这里也可以看出不同的映射方式对最后的结果是会产生巨大的影响;
  • NLP 当中目前最火热的研究方向便是如何将自然语言映射成更好的词向量。
  • 我们构建完词向量后,将所有的词向量拼接起来构成一个6*5的二维矩阵,作为最初的输入。

2、Convolution 卷积

在这里插入图片描述
卷积是一种数学算子。我们用一个简单的例子来说明一下:

  • step.1 将 “今天”/“天气”/“很好”/“,” 对应的 4 × 5 4×5 4×5 矩阵 与卷积核做一个point wise 的乘法然后求和, 便是卷积操作:

F e a t u r e M a p [ 0 ] = 0 × 1 + 0 × 0 + 0 × 1 + 0 × 0 + 1 × 0 ( 第 一 行 ) + 0 × 0 + 0 × 0 + 0 × 0 + 1 × 0 + 0 × 0 ( 第 二 行 ) + 0 × 1 + 0 × 0 + 1 × 1 + 0 × 0 + 0 × 0 ( 第 三 行 ) + 0 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 四 行 ) = 1 \begin{aligned} FeatureMap[0] &= 0×1 + 0×0 + 0×1 + 0×0 + 1×0 \quad (第一行)\\ &+ 0×0 + 0×0 + 0×0 + 1×0 + 0×0 \quad (第二行)\\ &+ 0×1 + 0×0 + 1×1 + 0×0 + 0×0 \quad(第三行)\\ &+ 0×1 + 1×0 + 0×1 + 0×0 + 0×0 \quad (第四行)\\ &= 1 \end{aligned} FeatureMap[0]=0×1+0×0+0×1+0×0+1×0()+0×0+0×0+0×0+1×0+0×0()+0×1+0×0+1×1+0×0+0×0()+0×1+1×0+0×1+0×0+0×0()=1

  • step.2 将窗口向下滑动一格(滑动的距离可以自己设置),“天气”/“很好”/“,”/“出来” 对应的4*5 矩阵 与卷积核(权值不变) 继续做point wise 乘法后求和

F e a t u r e M a p [ 1 ] = 0 × 1 + 0 × 0 + 0 × 1 + 1 × 0 + 0 × 0 ( 第 一 行 ) + 0 × 0 + 0 × 0 + 1 × 0 + 0 × 0 + 0 × 0 ( 第 二 行 ) + 0 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 三 行 ) + 1 × 1 + 0 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 四 行 ) = 1 \begin{aligned} FeatureMap[1] &= 0×1 + 0×0 + 0×1 + 1×0 + 0×0 \quad (第一行)\\ &+ 0×0 + 0×0 + 1×0 + 0×0 + 0×0 \quad (第二行)\\ &+ 0×1 + 1×0 + 0×1 + 0×0 + 0×0 \quad(第三行)\\ &+ 1×1 + 0×0 + 0×1 + 0×0 + 0×0 \quad (第四行)\\ &= 1 \end{aligned} FeatureMap[1]=0×1+0×0+0×1+1×0+

这篇关于NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128850

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原