NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】

本文主要是介绍NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《TextCNN 原始论文:Convolutional Neural Networks for Sentence Classification》

一、概述

1、TextCNN 是什么?

我们之前提前CNN时,通常会认为是属于CV领域,用于计算机视觉方向的工作,但是在2014年,Yoon Kim针对CNN的输入层做了一些变形,提出了文本分类模型textCNN。与传统图像的CNN网络相比, textCNN 在网络结构上没有任何变化(甚至更加简单了), 从图一可以看出textCNN 其实只有一层卷积,一层max-pooling, 最后将输出外接softmax 来n分类。

在这里插入图片描述

在这里插入图片描述
与图像当中CNN的网络相比,textCNN 最大的不同便是在输入数据的不同:

  • 图像是二维数据, 图像的卷积核是从左到右, 从上到下进行滑动来进行特征抽取。
  • 自然语言是一维数据, 虽然经过word-embedding 生成了二维向量,但是对词向量做从左到右滑动来进行卷积没有意义. 比如 “今天” 对应的向量[0, 0, 0, 0, 1], 按窗口大小为 1 × 2 1× 2 1×2 从左到右滑动得到[0,0], [0,0], [0,0], [0, 1]这四个向量, 对应的都是"今天"这个词汇, 这种滑动没有帮助。

TextCNN的成功, 不是网络结构的成功, 而是通过引入已经训练好的词向量来在多个数据集上达到了超越benchmark 的表现,进一步证明了构造更好的embedding, 是提升NLP各项任务的关键

2、TextCNN 的优势

  1. TextCNN最大优势网络结构简单 ,在模型网络结构如此简单的情况下,通过引入已经训练好的词向量依旧有很不错的效果,在多项数据数据集上超越benchmark。

  2. 网络结构简单导致参数数目少, 计算量少, 训练速度快,在单机单卡的v100机器上,训练165万数据, 迭代26万步,半个小时左右可以收敛。

二、TextCNN 模型

1、分词&构建词向量

如下图所示, textCNN 首先将 “今天天气很好,出来玩” 分词成"今天/天气/很好/,/出来/玩, 通过word2vec或者GLOV 等embedding 方式将每个词成映射成一个5维(维数可以自己指定)词向量, 如 “今天” -> [0,0,0,0,1], “天气” ->[0,0,0,1,0], “很好” ->[0,0,1,0,0]等等。

在这里插入图片描述
这样做的好处主要是将自然语言数值化,方便后续的处理。

  • 从这里也可以看出不同的映射方式对最后的结果是会产生巨大的影响;
  • NLP 当中目前最火热的研究方向便是如何将自然语言映射成更好的词向量。
  • 我们构建完词向量后,将所有的词向量拼接起来构成一个6*5的二维矩阵,作为最初的输入。

2、Convolution 卷积

在这里插入图片描述
卷积是一种数学算子。我们用一个简单的例子来说明一下:

  • step.1 将 “今天”/“天气”/“很好”/“,” 对应的 4 × 5 4×5 4×5 矩阵 与卷积核做一个point wise 的乘法然后求和, 便是卷积操作:

F e a t u r e M a p [ 0 ] = 0 × 1 + 0 × 0 + 0 × 1 + 0 × 0 + 1 × 0 ( 第 一 行 ) + 0 × 0 + 0 × 0 + 0 × 0 + 1 × 0 + 0 × 0 ( 第 二 行 ) + 0 × 1 + 0 × 0 + 1 × 1 + 0 × 0 + 0 × 0 ( 第 三 行 ) + 0 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 四 行 ) = 1 \begin{aligned} FeatureMap[0] &= 0×1 + 0×0 + 0×1 + 0×0 + 1×0 \quad (第一行)\\ &+ 0×0 + 0×0 + 0×0 + 1×0 + 0×0 \quad (第二行)\\ &+ 0×1 + 0×0 + 1×1 + 0×0 + 0×0 \quad(第三行)\\ &+ 0×1 + 1×0 + 0×1 + 0×0 + 0×0 \quad (第四行)\\ &= 1 \end{aligned} FeatureMap[0]=0×1+0×0+0×1+0×0+1×0()+0×0+0×0+0×0+1×0+0×0()+0×1+0×0+1×1+0×0+0×0()+0×1+1×0+0×1+0×0+0×0()=1

  • step.2 将窗口向下滑动一格(滑动的距离可以自己设置),“天气”/“很好”/“,”/“出来” 对应的4*5 矩阵 与卷积核(权值不变) 继续做point wise 乘法后求和

F e a t u r e M a p [ 1 ] = 0 × 1 + 0 × 0 + 0 × 1 + 1 × 0 + 0 × 0 ( 第 一 行 ) + 0 × 0 + 0 × 0 + 1 × 0 + 0 × 0 + 0 × 0 ( 第 二 行 ) + 0 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 三 行 ) + 1 × 1 + 0 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 四 行 ) = 1 \begin{aligned} FeatureMap[1] &= 0×1 + 0×0 + 0×1 + 1×0 + 0×0 \quad (第一行)\\ &+ 0×0 + 0×0 + 1×0 + 0×0 + 0×0 \quad (第二行)\\ &+ 0×1 + 1×0 + 0×1 + 0×0 + 0×0 \quad(第三行)\\ &+ 1×1 + 0×0 + 0×1 + 0×0 + 0×0 \quad (第四行)\\ &= 1 \end{aligned} FeatureMap[1]=0×1+0×0+0×1+1×0+

这篇关于NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128850

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可