NLP-词向量-发展:词袋模型【onehot、tf-idf】 -> 主题模型【LSA、LDA】 -> 词向量静态表征【Word2vec、GloVe、FastText】 -> 词向量动态表征【Bert】

本文主要是介绍NLP-词向量-发展:词袋模型【onehot、tf-idf】 -> 主题模型【LSA、LDA】 -> 词向量静态表征【Word2vec、GloVe、FastText】 -> 词向量动态表征【Bert】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NLP-词向量-发展:

  • 词袋模型【onehot、tf-idf】
  • 主题模型【LSA、LDA】
  • 基于词向量的静态表征【Word2vec、GloVe、FastText】
  • 基于词向量的动态表征【Bert】

一、词袋模型(Bag-Of-Words)

1、One-Hot

词向量的维数为整个词汇表的长度,对于每个词,将其对应词汇表中的位置置为1,其余维度都置为0。

缺点是:

  • 维度非常高,编码过于稀疏,易出现维数灾难问题;
  • 不能体现词与词之间的相似性,每个词都是孤立的,泛化能力差。

在这里插入图片描述

2、tf-idf

在这里插入图片描述

二、主题模型

缺点:在词对推理任务上表现特别差;可解释性差;

1、LSA(SVD)

1.1 “term-document” type

在这里插入图片描述

1.2 “term-term” type

词共现矩阵

  1. I enjoy flying。
  2. I like NLP。
  3. I like deep learning。
    在这里插入图片描述
    缺点:在词对推理任务上表现特别差;可解释性差;

2、pLSA

3、LDA

三、基于词向量的固定表征

神经网络将词汇表中的词作为输入,输出一个低维的向量表示,然后使用反向传播优化参数。

生成词向量的神经网络模型分为两种:

  • 一种的目的是训练可以表示语义关系的词向量,能被用于后续任务中,如word2vec、glove;
  • 另一种是将词向量作为副产品产生,根据特定任务需要训练得到词向量,如fastText。

1、word2vec

Word2Vec:其输出是单词同时出现的概率分布(共现概率分布)

2、glove

GLove:相比单词同时出现的概率(共现概率分布),单词同时出现的概率的比率能够更好地区分单词。

  • 比如,假设我们要表示“冰”和“蒸汽”这两个单词。对于和“冰”相关,和“蒸汽”无关的单词,比如“固体”,我们可以期望P冰-固体/P蒸汽-固体较大。类似地,对于和“冰”无关,和“蒸汽”相关的单词,比如“气体”,我们可以期望P冰-气体/P蒸汽-气体较小。相反,对于像“水”之类同时和“冰”、“蒸汽”相关的单词,以及“时尚”之类同时和“冰”、“蒸汽”无关的单词,我们可以期望P冰-水/P蒸汽-水、P冰-时尚/P蒸汽-时尚应当接近于1。

官方glove: https://github.com/stanfordnlp/GloVe,C实现

Python 实现: https://github.com/maciejkula/glove-python

安装
pip install glove_python

在这里插入图片描述

3、fastText

四、基于词向量的动态表征

特征提取器:

  • elmo采用LSTM进行提取;
  • GPT和bert则采用Transformer进行提取;
  • 很多任务表明Transformer特征提取能力强于LSTM,elmo采用1层静态向量+2层LSTM,多层提取能力有限,而GPT和bert中的Transformer可采用多层,并行计算能力强

单/双向语言模型:

  • GPT采用单向语言模型,ELMo和BERT采用双向语言模型
  • GPT和BERT都采用Transformer,Transformer是Encoder-Decoder结构,GPT的单向语言模型采用Decoder结构,Decoder的部分见到的都是不完整的句子;BERT的双向语言模型则采用Encoder部分,能够看到完整句子

1、elmo

2、GPT

3、Bert

五、各种词向量的特点

  • One-hot
    • 维度灾难、语义鸿沟
  • 矩阵分解 (LSA)
    • 利用全局语料特征,但SVD求解计算复杂度大;
  • 分布式表示 (distributed representation)
    • 基于分布式假设 – 相同上下文语境的词有似含义
    • 基于NNLM/RNNLM的词向量:词向量为副产物,存在效率不高等问题;
    • word2vec、fastText:优化效率高,但是基于局部语料;
    • glove:基于全局预料,结合了LSA和word2vec的优点;
    • elmo、GPT、bert:动态特征,可以解决一词多义的问题。

这篇关于NLP-词向量-发展:词袋模型【onehot、tf-idf】 -> 主题模型【LSA、LDA】 -> 词向量静态表征【Word2vec、GloVe、FastText】 -> 词向量动态表征【Bert】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128828

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

基于Nacos实现SpringBoot动态定时任务调度

《基于Nacos实现SpringBoot动态定时任务调度》本文主要介绍了在SpringBoot项目中使用SpringScheduling实现定时任务,并通过Nacos动态配置Cron表达式实现任务的动... 目录背景实现动态变更定时机制配置化 cron 表达式Spring schedule 调度规则追踪定时

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php