Pandas-数据操作-字符串型(二):常用方法【lower、upper、len、startswith、endswith、strip、lstrip、replace、split、rsplit】

本文主要是介绍Pandas-数据操作-字符串型(二):常用方法【lower、upper、len、startswith、endswith、strip、lstrip、replace、split、rsplit】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、字符串常用方法:lower,upper,len,startswith,endswith

import numpy as np
import pandas as pds = pd.Series(['A', 'b', 'bbhello', '123', np.nan])
print("s = \n", s)
print('-' * 200)
print("lower小写: s.str.lower() = \n", s.str.lower())
print('-' * 200)
print("upper大写: s.str.upper() = \n", s.str.upper())
print('-' * 200)
print("len字符长度: s.str.len() = \n", s.str.len())
print('-' * 200)
print("判断起始是否为b: s.str.startswith('b') = \n", s.str.startswith('b'))
print('-' * 200)
print("判断结束是否为3: s.str.endswith('3') = \n", s.str.endswith('3'))

打印结果:

s = 
0          A
1          b
2    bbhello
3        123
4        NaN
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
lower小写: s.str.lower() = 
0          a
1          b
2    bbhello
3        123
4        NaN
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
upper大写: s.str.upper() = 0          A
1          B
2    BBHELLO
3        123
4        NaN
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
len字符长度: s.str.len() = 
0    1.0
1    1.0
2    7.0
3    3.0
4    NaN
dtype: float64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
判断起始是否为b: s.str.startswith('b') = 
0    False
1     True
2     True
3    False
4      NaN
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
判断结束是否为3: s.str.endswith('3') = 
0    False
1    False
2    False
3     True
4      NaN
dtype: objectProcess finished with exit code 0

二、字符串常用方法:strip

import numpy as np
import pandas as pd# 字符串常用方法(2) - strips = pd.Series([' jack', 'jill ', ' je sse ', 'frank'])
df = pd.DataFrame(np.random.randn(3, 2),columns=[' Column A ', ' Column B '],index=range(3))
print("s = \n", s)
print('-' * 200)
print("df = \n", df)
print('-' * 200)# 去除字符串左右的空格
print("去除字符串左右的空格: s.str.strip() = \n", s.str.strip())
# 去除字符串中的左空格
print("去除字符串中的左空格: s.str.lstrip() = \n", s.str.lstrip())
# 去除字符串中的右空格
print("去除字符串中的右空格: s.str.rstrip() = \n", s.str.rstrip())# 这里去掉了columns的前后空格,但没有去掉中间空格
df.columns = df.columns.str.strip()
print("df = \n", df)
print('-' * 200)

打印结果:

s = 
0        jack
1       jill 
2     je sse 
3       frank
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
df = Column A    Column B 
0   -1.318646   -0.831649
1   -0.339870   -1.141231
2   -0.024364   -2.163961
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
去除字符串左右的空格: s.str.strip() = 
0      jack
1      jill
2    je sse
3     frank
dtype: object
去除字符串中的左空格: s.str.lstrip() = 
0       jack
1      jill 
2    je sse 
3      frank
dtype: object
去除字符串中的右空格: s.str.rstrip() = 0       jack
1       jill
2     je sse
3      frank
dtype: object
df = Column A  Column B
0 -1.318646 -0.831649
1 -0.339870 -1.141231
2 -0.024364 -2.163961
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

三、字符串常用方法:replace

import numpy as np
import pandas as pd# 字符串常用方法(3) - replacedf = pd.DataFrame(np.random.randn(3, 2),columns=[' Column A ', ' Column B '],index=range(3))
# 替换
df.columns = df.columns.str.replace(' ', '-')
print("df = \n", df)
print('-' * 200)# n:替换个数
df.columns = df.columns.str.replace('-', '*', n=1)
print("df = \n", df)

打印结果:

df = -Column-A-  -Column-B-
0    0.704728   -0.835929
1    1.478930   -2.708538
2    0.585825   -1.395908
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
df = *Column-A-  *Column-B-
0    0.704728   -0.835929
1    1.478930   -2.708538
2    0.585825   -1.395908Process finished with exit code 0

四、字符串常用方法:split、rsplit

import numpy as np
import pandas as pd# 字符串常用方法(4) - split、rsplits = pd.Series(['a,b,c', '1,2,3', ['a,,,c'], np.nan])
print("s = \n", s)
print('-' * 200)# 类似字符串的split
data1 = s.str.split(',')
print("data1 = s.str.split(',') = \n{0} \ntype(data1) = {1}".format(data1, type(data1)))
print('-' * 100)# 直接索引得到一个list
data2 = data1[0]
print("data2 = data1[0] = s.str.split(',')[0] = \n{0} \ntype(data2) = {1}".format(data2, type(data2)))
print('-' * 100)# 可以使用get或[]符号访问拆分列表中的元素
data3 = s.str.split(',').str.get(1)
print("data3 = s.str.split(',').str.get(1) = \n{0} \ntype(data3) = {1}".format(data3, type(data3)))
print('-' * 200)# 可以使用expand可以轻松扩展此操作以返回DataFrame
# n参数限制分割数
# rsplit类似于split,反向工作,即从字符串的末尾到字符串的开头
data4 = s.str.split(',', expand=True)
print("data4 = s.str.split(',', expand=True) = \n{0} \ntype(data4) = {1}".format(data4, type(data4)))
print('-' * 100)
data5 = s.str.split(',', expand=True, n=1)
print("data5 = s.str.split(',', expand=True, n=1) = \n{0} \ntype(data5) = {1}".format(data5, type(data5)))
print('-' * 100)
data6 = s.str.rsplit(',', expand=True, n=1)
print("data6 = s.str.rsplit(',', expand=True, n=1) = \n{0} \ntype(data6) = {1}".format(data6, type(data6)))
print('-' * 200)# Dataframe使用split
df = pd.DataFrame({'key1': ['a,b,c', '1,2,3', [':,., ']],'key2': ['a-b-c', '1-2-3', [':-.- ']]})
print("df = \n", df)
print('-' * 100)
data7 = df['key2'].str.split('-')
print("data7 = df['key2'].str.split('-') = \n{0} \ntype(data7) = {1}".format(data7, type(data7)))
print('-' * 200)

打印结果:

s = 
0      a,b,c
1      1,2,3
2    [a,,,c]
3        NaN
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data1 = s.str.split(',') = 
0    [a, b, c]
1    [1, 2, 3]
2          NaN
3          NaN
dtype: object 
type(data1) = <class 'pandas.core.series.Series'>
----------------------------------------------------------------------------------------------------
data2 = data1[0] = s.str.split(',')[0] = 
['a', 'b', 'c'] 
type(data2) = <class 'list'>
----------------------------------------------------------------------------------------------------
data3 = s.str.split(',').str.get(1) = 
0      b
1      2
2    NaN
3    NaN
dtype: object 
type(data3) = <class 'pandas.core.series.Series'>
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data4 = s.str.split(',', expand=True) = 0    1    2
0    a    b    c
1    1    2    3
2  NaN  NaN  NaN
3  NaN  NaN  NaN 
type(data4) = <class 'pandas.core.frame.DataFrame'>
----------------------------------------------------------------------------------------------------
data5 = s.str.split(',', expand=True, n=1) = 0    1
0    a  b,c
1    1  2,3
2  NaN  NaN
3  NaN  NaN 
type(data5) = <class 'pandas.core.frame.DataFrame'>
----------------------------------------------------------------------------------------------------
data6 = s.str.rsplit(',', expand=True, n=1) = 0    1
0  a,b    c
1  1,2    3
2  NaN  NaN
3  NaN  NaN 
type(data6) = <class 'pandas.core.frame.DataFrame'>
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
df = key1     key2
0    a,b,c    a-b-c
1    1,2,3    1-2-3
2  [:,., ]  [:-.- ]
----------------------------------------------------------------------------------------------------
data7 = df['key2'].str.split('-') = 
0    [a, b, c]
1    [1, 2, 3]
2          NaN
Name: key2, dtype: object 
type(data7) = <class 'pandas.core.series.Series'>
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

这篇关于Pandas-数据操作-字符串型(二):常用方法【lower、upper、len、startswith、endswith、strip、lstrip、replace、split、rsplit】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128681

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma