ID3算法原理及Python实践

2024-09-01 01:36
文章标签 python 算法 实践 原理 id3

本文主要是介绍ID3算法原理及Python实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、ID3算法原理

ID3(Iterative Dichotomiser 3)算法是一种用于分类和预测的决策树学习算法,由Ross Quinlan在1986年提出。该算法的核心原理基于信息论中的信息增益概念,通过选择信息增益最大的属性来构建决策树。以下是ID3算法原理的详细解释:

1. 信息熵与信息增益

信息熵:信息熵是度量数据集中不确定性的一个指标。在ID3算法中,信息熵用于表示数据集在分类前的混乱程度。信息熵的值越大,表示数据集的不确定性越高,即数据集中的样本类别越分散。

信息增益:信息增益是指在选择某个属性进行划分后,数据集不确定性的减少程度。具体来说,信息增益是划分前数据集的信息熵与划分后所有子数据集加权平均信息熵之差。信息增益越大,表示该属性对于分类的贡献越大。

2. ID3算法步骤

ID3算法通过以下步骤构建决策树:

计算信息熵:首先计算整个数据集的信息熵,这表示了数据集在分类前的混乱程度。

选择最优属性:对于数据集中的每个属性,计算其信息增益。选择信息增益最大的属性作为当前节点的最优划分属性。

划分数据集:根据最优属性的不同取值,将数据集划分为若干个子集。

递归构建决策树:对每个子集重复步骤1至3,直到满足停止条件(如所有子集都属于同一类别或没有更多属性可供划分)。

构建决策树:根据选择的属性和划分结果构建决策树,每个节点表示一个属性,每个分支表示一个属性值,每个叶节点表示一个类别。

3. 优缺点

优点:

原理简单,易于理解。

对于类别较少的分类问题效果较好。

生成的决策树规模较小,查询速度快。

缺点:

只能处理离散型数据,对于连续型数据需要预先进行离散化处理。

倾向于选择取值较多的属性作为划分属性,这可能导致决策树过于复杂,出现“过拟合”现象。

没有考虑缺失值处理,对于含有缺失值的数据集需要预处理。

4. 应用场景

ID3算法适用于数据集属性较少,数据类型为离散型的分类问题。它常被用于解决文本分类、垃圾邮件过滤、医学诊断、金融风险评估等问题。

总的来说,ID3算法是一种经典的决策树学习算法,通过信息增益来选择最优属性进行数据集划分,从而构建出用于分类和预测的决策树。

二、ID3算法的Python实践

在Python中实现ID3算法,我们首先需要定义几个关键的功能:计算信息熵、计算信息增益,以及根据这些概念来构建决策树。以下是一个简化的ID3算法实现,假设我们只处理离散特征且数据已经是清洁的(没有缺失值)。

首先,我们需要安装或确认安装了numpy库,虽然在这个简单实现中我们可能不直接使用它,但它对于更复杂的数据处理任务是有用的。

下面是一个简单的ID3算法实现:

from collections import Counter

from math import log2

def calc_entropy(target_counts):

    """计算信息熵"""

    total = sum(target_counts.values())

    entropy = 0.0

    for count in target_counts.values():

        p = count / total

        if p > 0:

            entropy -= p * log2(p)

    return entropy

def split_dataset(dataset, axis, value):

    """根据给定特征和值分割数据集"""

    ret_dataset = []

    for feature_vec in dataset:

        if feature_vec[axis] == value:

            reduced_feature_vec = feature_vec[:axis]

            reduced_feature_vec.extend(feature_vec[axis+1:])

            ret_dataset.append(reduced_feature_vec)

    return ret_dataset

def choose_best_feature_to_split(dataset):

    """选择最佳特征进行分割"""

    num_features = len(dataset[0]) - 1  # 假设最后一列是目标变量

    base_entropy = calc_entropy(Counter(row[-1] for row in dataset))

    best_info_gain = 0.0

    best_feature = -1

   

    for i in range(num_features):

        feat_values = [example[i] for example in dataset]

        unique_vals = set(feat_values)

        new_entropy = 0.0

       

        for value in unique_vals:

            sub_dataset = split_dataset(dataset, i, value)

            prob = len(sub_dataset) / float(len(dataset))

            new_entropy += prob * calc_entropy(Counter(row[-1] for row in sub_dataset))

       

        info_gain = base_entropy - new_entropy

       

        if (info_gain > best_info_gain):

            best_info_gain = info_gain

            best_feature = i

   

    return best_feature

def create_tree(dataset, labels):

    """创建决策树"""

    class_list = [row[-1] for row in dataset]

    if class_list.count(class_list[0]) == len(class_list):

        return class_list[0]  # 完美分类,所有项属于同一类

   

    if len(dataset[0]) == 1:  # 没有更多特征

        return Counter(class_list).most_common(1)[0][0]

   

    best_feat = choose_best_feature_to_split(dataset)

    best_feat_label = labels[best_feat]

    my_tree = {best_feat_label:{}}

    del(labels[best_feat])

    feat_values = [example[best_feat] for example in dataset]

    unique_vals = set(feat_values)

   

    for value in unique_vals:

        sub_labels = labels[:]

        my_tree[best_feat_label][value] = create_tree(split_dataset(dataset, best_feat, value), sub_labels)

   

    return my_tree

# 示例用法

# 假设有这样一个数据集

# 注意:这个数据集是简化的,实际应用中数据集会更加复杂

data = [

    ['no surfacing', 1, 'flippers'],

    ['no surfacing', 1, 'flippers'],

    ['surfacing', 1, 'flippers'],

    ['no surfacing', 0, 'flippers'],

    ['no surfacing', 1, 'no flippers']

]

labels = ['surfacing', 'fish', 'flippers']

# 注意:我们需要将数据集中的目标变量(在这个例子中是'fish')转换为整数值

# 为了简化,我们假设'1'代表'yes'(比如是鱼),'0'代表'no'(比如不是鱼)

# 但在这个例子中,我们保持原始值

# 构建决策树

tree =继续构建决策树的示例,我们不需要修改`data`中的数据来将目标变量转换为整数值,因为在这个例子中我们直接使用了字符串`'1'`和`'0'`来表示分类结果。但是,在更复杂的应用中,将目标变量编码为整数可能会更方便处理。

现在,我们将使用之前定义的函数来构建决策树:

```python

# 构建决策树

tree = create_tree(data, labels)

# 打印决策树

def print_tree(tree, indent=''):

    for feat, sub_tree in tree.items():

        print('{}{} ->'.format(indent, feat))

        if isinstance(sub_tree, dict):

            for next_feat, next_tree in sub_tree.items():

                print_tree(next_tree, indent + '  ')

        else:

            print('{}{} {}'.format(indent + '  ', next_feat if isinstance(sub_tree, list) else '', sub_tree))

print_tree(tree)

但是,请注意,由于我们的示例数据集非常小且不完全代表真实世界的复杂性,因此生成的决策树可能不是很有用或直观。此外,由于我们没有将目标变量'1'和'0'转换为整数,create_tree函数中的某些部分可能需要调整才能正确处理字符串类标签。

不过,为了保持示例的简单性,我们将假设一切工作正常,并打印出生成的决策树。

然而,在实际应用中,您可能需要处理更复杂的情况,如处理缺失值、连续特征、不平衡的数据集等。此外,对于大型数据集,ID3算法可能不是最高效的选择,因为它可能会倾向于生成非常深的树,这可能导致过拟合。在这种情况下,您可能需要考虑使用C4.5(ID3的改进版本)或CART等其他决策树算法。

另外,请注意,上面的create_tree函数中的sub_tree[value] = create_tree(...)行假设了value是唯一的,这在实际应用中可能不是总是成立的。对于具有多个相同value的情况,您可能需要稍微修改该函数以确保它正确处理这些情况(尽管在这个简单的示例中它可能仍然可以工作)。

最后,请确保您的数据集是正确格式化的,并且labels列表中的标签与数据集中的特征顺序相匹配。如果数据集很大或很复杂,您可能需要编写额外的代码来预处理数据。

这篇关于ID3算法原理及Python实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125572

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项