Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类

本文主要是介绍Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.自适应学习率
    • 1.1 AdaGrad
    • 1.2 RMSProp
    • 1.3 Adam
    • 1.4 学习率调度
    • 1.5 优化策略的总结
  • 2.分类
    • 2.1 分类与回归的关系
    • 2.2 带有 softmax 的分类
    • 2.3 分类损失

1.自适应学习率

传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法通过动态调整学习率,以适应不同参数的优化需求,从而提高训练效率和模型性能。

1.1 AdaGrad

AdaGrad(Adaptive Gradient)是一种自适应学习率算法,它根据每个参数的历史梯度调整学习率。具体而言,AdaGrad在每次更新时对每个参数的学习率进行缩放,使得学习率对于梯度较大的参数较小,而对于梯度较小的参数较大。

1.2 RMSProp

RMSProp(Root Mean Squared Propagation)是对AdaGrad的改进,旨在解决AdaGrad在训练后期学习率迅速下降的问题。RMSProp通过对梯度的平方进行指数加权平均来调整学习率.

1.3 Adam

Adam(Adaptive Moment Estimation)算法结合了AdaGrad和RMSProp的思想,通过利用梯度的一阶矩估计和二阶矩估计来调整学习率。

1.4 学习率调度

学习率调度是进一步优化模型训练的一种策略,包括学习率衰减和预热策略。学习率衰减通过逐步减小学习率,帮助模型在训练后期更精细地调整参数。预热策略则是在训练初期逐步增加学习率,以避免过大的初始步长导致的不稳定性。两者结合可以提高模型的训练效率和最终性能。

1.5 优化策略的总结

自适应学习率方法如AdaGrad、RMSProp和Adam各有优缺点。AdaGrad适合处理稀疏数据,但可能在训练后期导致学习率过小。RMSProp通过考虑梯度的近期信息来调整学习率,但仍然存在调整不够平滑的问题。Adam结合了动量和自适应学习率的优点,通常能够提供更好的训练效果。在实践中,根据具体问题选择合适的优化策略,并结合动量和自适应学习率,可以显著改进模型的训练过程。

2.分类

2.1 分类与回归的关系

分类与回归问题是机器学习中最常见的问题,二者的区别如下:

分类:分类任务的目标是将输入数据分配到预定义的离散类别中,模型输出的是离散的类别标签。

回归:回归任务的目标是预测连续的数值,模型输出的是一个连续的实数值。

2.2 带有 softmax 的分类

在多分类任务中,softmax 函数十分常见,它可以将一个未归一化的向量(通常是神经网络的输出)转换为一个概率分布,确保输出向量的每个分量都在0到1之间,并且所有分量的和等于1。这使得 softmax 函数特别适合用于分类问题的输出层,其中需要为每个类别分配一个概率值。

2.3 分类损失

通过计算预测值 y^​ 与真实标签 y之间的距离,得到分类的损失。常用的损失函数包括均方误差和交叉熵损失。

这篇关于Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125336

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

javaSE类和对象进阶用法举例详解

《javaSE类和对象进阶用法举例详解》JavaSE的面向对象编程是软件开发中的基石,它通过类和对象的概念,实现了代码的模块化、可复用性和灵活性,:本文主要介绍javaSE类和对象进阶用法的相关资... 目录前言一、封装1.访问限定符2.包2.1包的概念2.2导入包2.3自定义包2.4常见的包二、stati

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编