利用clip模型实现text2draw

2024-08-31 16:36
文章标签 实现 模型 clip text2draw

本文主要是介绍利用clip模型实现text2draw,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考论文

实践

有数据增强的代码

import math
import collections
import CLIP_.clip as clip
import torch
import torch.nn as nn
from torchvision import models, transforms
import numpy as np
import webp
from PIL import Image
import skimage
import torchvision
import pydiffvg
import os
import torch.nn.functional as Fclass GeometrymatchLoss(torch.nn.Module):def __init__(self, device, reference_images_path):super(GeometrymatchLoss, self).__init__()self.device = deviceself.model, clip_preprocess = clip.load('ViT-B/32', self.device, jit=False)self.model.eval()self.preprocess = transforms.Compose([clip_preprocess.transforms[0], clip_preprocess.transforms[-1]])  # clip normalisationself.reference_images_feature = self.reference_images_feature(reference_images_path)self.reference_images_feature =self.reference_images_feature/ self.reference_images_feature.norm(dim=-1, keepdim=True)self.text = clip.tokenize([ "A picture of triangle"]).to(device)self.text_features = self.model.encode_text(self.text)# self.text_features = self.text_features / self.text_features.norm(dim=-1, keepdim=True)print("text_features.requires_grad:",self.text_features.requires_grad)self.text_features=self.text_features.detach()self.shape_groups=[pydiffvg.ShapeGroup(shape_ids=torch.tensor([0]), fill_color=torch.tensor([0.0, 0.0, 0.0, 1.0]),stroke_color=torch.tensor([0.0, 0.0, 0.0, 1.0]))]# Image Augmentation Transformationself.augment_trans = transforms.Compose([transforms.RandomPerspective(fill=1, p=1, distortion_scale=0.5),transforms.RandomResizedCrop(224, scale=(0.7, 0.9)),])def forward(self, t,canvas_width, canvas_height,shapes):scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width, canvas_height, shapes, self.shape_groups)# 渲染图像render = pydiffvg.RenderFunction.applytarget = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)if target.shape[-1] == 4:target = self.compose_image_with_white_background(target)if t%100==0:pydiffvg.imwrite(target.cpu(), f'learn/log_augs/output_{t}.png', gamma=2.2)# targets_ = self.preprocess(target.permute(2, 0, 1).unsqueeze(0)).to(self.device)img = target.unsqueeze(0)img = img.permute(0, 3, 1, 2)loss = 0NUM_AUGS = 4img_augs = []for n in range(NUM_AUGS):img_augs.append(self.augment_trans(img))im_batch = torch.cat(img_augs)image_features = self.model.encode_image(im_batch)# logit_scale = self.model.logit_scale.exp()for n in range(NUM_AUGS):loss -= torch.cosine_similarity(self.text_features, image_features[n:n + 1], dim=1)return lossdef compose_image_with_white_background(self, img: torch.tensor) -> torch.tensor:if img.shape[-1] == 3:  # return img if it is already rgbreturn img# Compose img with white backgroundalpha = img[:, :, 3:4]img = alpha * img[:, :, :3] + (1 - alpha) * torch.ones(img.shape[0], img.shape[1], 3, device=self.device)return imgdef read_png_image_from_path(self, path_to_png_image: str) -> torch.tensor:numpy_image = skimage.io.imread(path_to_png_image)normalized_tensor_image = torch.from_numpy(numpy_image).to(torch.float32) / 255.0resizer = torchvision.transforms.Resize((224, 224))resized_image = resizer(normalized_tensor_image.permute(2, 0, 1)).permute(1, 2, 0)return resized_imagedef reference_images_feature(self, reference_images_path):reference_images_num = len(os.listdir(reference_images_path))reference_images_feature = []for i in range(reference_images_num):i_reference_image = self.read_png_image_from_path(os.path.join(reference_images_path, str(i) + ".png"))if i_reference_image.shape[-1] == 4:i_reference_image = self.compose_image_with_white_background(i_reference_image)# targets_ = self.preprocess(i_reference_image.permute(2, 0, 1).unsqueeze(0)).to(self.device)i_reference_image_features = self.model.encode_image(i_reference_image.permute(2, 0, 1).unsqueeze(0).to(self.device)).detach()reference_images_feature.append(i_reference_image_features)return torch.cat(reference_images_feature)def read_png_image_from_path(path_to_png_image: str) -> torch.tensor:if path_to_png_image.endswith('.webp'):numpy_image = np.array(webp.load_image(path_to_png_image))else:numpy_image = skimage.io.imread(path_to_png_image)normalized_tensor_image = torch.from_numpy(numpy_image).to(torch.float32) / 255.0resizer = torchvision.transforms.Resize((224, 224))resized_image = resizer(normalized_tensor_image.permute(2, 0, 1)).permute(1, 2, 0)return resized_imageif __name__ == '__main__':torch.autograd.set_detect_anomaly(True)from tqdm import tqdmdef get_bezier_circle(radius: float = 80,segments: int = 4,bias: np.array = np.asarray([100., 100.])):deg = torch.arange(0, segments * 3 + 1) * 2 * np.pi / (segments * 3 + 1)points = torch.stack((torch.cos(deg), torch.sin(deg))).Tpoints = points * radius + torch.tensor(bias).unsqueeze(dim=0)points = points.type(torch.FloatTensor).contiguous()return pointsdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")matchLoss = GeometrymatchLoss(device, "reference_images/")# print(matchLoss.reference_images_feature.shape)# img1 = read_png_image_from_path('learn/output.png')canvas_width, canvas_height = 224, 224num_segments=4points1 = get_bezier_circle()path = pydiffvg.Path(num_control_points=torch.tensor(num_segments * [2] + [0],dtype=torch.int32), points=points1, stroke_width=torch.tensor(2.0),is_closed=True)shapes=[path]path.points.requires_grad = Trueprint(id(path.points))print(id(points1))points_vars = []points_vars.append(path.points)points_optim = torch.optim.Adam(points_vars, lr=1)pbar = tqdm(range(100000))print(points1)for t in pbar:# print(t)points_optim.zero_grad()# print("match_loss:", match_loss)match_loss = matchLoss(t,224, 224, shapes)match_loss.backward()# print(path.points.grad)points_optim.step()pbar.set_postfix({"match_loss": f"{match_loss.item()}"})# print(points_vars[0])pass

迭代1000轮次后生成的结果
在这里插入图片描述

没有图像增强

import math
import collections
import CLIP_.clip as clip
import torch
import torch.nn as nn
from torchvision import models, transforms
import numpy as np
import webp
from PIL import Image
import skimage
import torchvision
import pydiffvg
import os
import torch.nn.functional as Fclass GeometrymatchLoss(torch.nn.Module):def __init__(self, device, reference_images_path):super(GeometrymatchLoss, self).__init__()self.device = deviceself.model, clip_preprocess = clip.load('ViT-B/32', self.device, jit=False)self.model.eval()self.preprocess = transforms.Compose([clip_preprocess.transforms[0], clip_preprocess.transforms[-1]])  # clip normalisation# self.preprocess = transforms.Compose([clip_preprocess.transforms[-1]])  # clip normalisationself.reference_images_feature = self.reference_images_feature(reference_images_path)self.reference_images_feature =self.reference_images_feature/ self.reference_images_feature.norm(dim=-1, keepdim=True)self.text = clip.tokenize([ "A picture of triangle"]).to(device)# self.text = clip.tokenize(["A picture of rectangle", "A picture of triangle", "A picture of circle", "A picture of pentagon","A picture of five-pointed star"]).to(device)self.text_features = self.model.encode_text(self.text)self.text_features = self.text_features / self.text_features.norm(dim=-1, keepdim=True)print("text_features.requires_grad:",self.text_features.requires_grad)self.text_features=self.text_features.detach()self.shape_groups=[pydiffvg.ShapeGroup(shape_ids=torch.tensor([0]), fill_color=torch.tensor([0.0, 0.0, 0.0, 1.0]),stroke_color=torch.tensor([0.0, 0.0, 0.0, 1.0]))]# Image Augmentation Transformationself.augment_trans = transforms.Compose([transforms.RandomPerspective(fill=1, p=1, distortion_scale=0.5),transforms.RandomResizedCrop(224, scale=(0.7, 0.9)),])def forward(self, t,canvas_width, canvas_height,shapes):scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width, canvas_height, shapes, self.shape_groups)# 渲染图像render = pydiffvg.RenderFunction.applytarget = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)if target.shape[-1] == 4:target = self.compose_image_with_white_background(target)if t%100==0:pydiffvg.imwrite(target.cpu(), f'learn/log/output_{t}.png', gamma=2.2)# targets_ = self.preprocess(target.permute(2, 0, 1).unsqueeze(0)).to(self.device)img = target.unsqueeze(0)img = img.permute(0, 3, 1, 2)loss = 0NUM_AUGS = 4img_augs = []for n in range(NUM_AUGS):img_augs.append(self.augment_trans(img))im_batch = torch.cat(img_augs)image_features = self.model.encode_image(img)self.targets_features: torch.tensor=image_features[0]self.targets_features = self.targets_features / self.targets_features.norm(dim=-1, keepdim=True)loss -= torch.cosine_similarity(self.text_features, self.targets_features, dim=1)return lossdef compose_image_with_white_background(self, img: torch.tensor) -> torch.tensor:if img.shape[-1] == 3:  # return img if it is already rgbreturn img# Compose img with white backgroundalpha = img[:, :, 3:4]img = alpha * img[:, :, :3] + (1 - alpha) * torch.ones(img.shape[0], img.shape[1], 3, device=self.device)return imgdef read_png_image_from_path(self, path_to_png_image: str) -> torch.tensor:numpy_image = skimage.io.imread(path_to_png_image)normalized_tensor_image = torch.from_numpy(numpy_image).to(torch.float32) / 255.0resizer = torchvision.transforms.Resize((224, 224))resized_image = resizer(normalized_tensor_image.permute(2, 0, 1)).permute(1, 2, 0)return resized_imagedef reference_images_feature(self, reference_images_path):reference_images_num = len(os.listdir(reference_images_path))reference_images_feature = []for i in range(reference_images_num):i_reference_image = self.read_png_image_from_path(os.path.join(reference_images_path, str(i) + ".png"))if i_reference_image.shape[-1] == 4:i_reference_image = self.compose_image_with_white_background(i_reference_image)# targets_ = self.preprocess(i_reference_image.permute(2, 0, 1).unsqueeze(0)).to(self.device)i_reference_image_features = self.model.encode_image(i_reference_image.permute(2, 0, 1).unsqueeze(0).to(self.device)).detach()reference_images_feature.append(i_reference_image_features)return torch.cat(reference_images_feature)def read_png_image_from_path(path_to_png_image: str) -> torch.tensor:if path_to_png_image.endswith('.webp'):numpy_image = np.array(webp.load_image(path_to_png_image))else:numpy_image = skimage.io.imread(path_to_png_image)normalized_tensor_image = torch.from_numpy(numpy_image).to(torch.float32) / 255.0resizer = torchvision.transforms.Resize((224, 224))resized_image = resizer(normalized_tensor_image.permute(2, 0, 1)).permute(1, 2, 0)return resized_imageif __name__ == '__main__':torch.autograd.set_detect_anomaly(True)from tqdm import tqdmdef get_bezier_circle(radius: float = 80,segments: int = 4,bias: np.array = np.asarray([100., 100.])):deg = torch.arange(0, segments * 3 + 1) * 2 * np.pi / (segments * 3 + 1)points = torch.stack((torch.cos(deg), torch.sin(deg))).Tpoints = points * radius + torch.tensor(bias).unsqueeze(dim=0)points = points.type(torch.FloatTensor).contiguous()return pointsdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")matchLoss = GeometrymatchLoss(device, "reference_images/")# print(matchLoss.reference_images_feature.shape)# img1 = read_png_image_from_path('learn/output.png')canvas_width, canvas_height = 224, 224num_segments=4points1 = get_bezier_circle()path = pydiffvg.Path(num_control_points=torch.tensor(num_segments * [2] + [0],dtype=torch.int32), points=points1, stroke_width=torch.tensor(2.0),is_closed=True)shapes=[path]path.points.requires_grad = Trueprint(id(path.points))print(id(points1))points_vars = []points_vars.append(path.points)points_optim = torch.optim.Adam(points_vars, lr=1)pbar = tqdm(range(100000))print(points1)for t in pbar:# print(t)points_optim.zero_grad()# print("match_loss:", match_loss)match_loss = matchLoss(t,224, 224, shapes)match_loss.backward()# print(path.points.grad)points_optim.step()pbar.set_postfix({"match_loss": f"{match_loss.item()}"})# print(points_vars[0])pass

迭代1000轮次后生成的结果
在这里插入图片描述
迭代2000轮次后生成的结果
在这里插入图片描述
迭代4000轮次后生成的结果
在这里插入图片描述
迭代8000轮次后生成的结果
在这里插入图片描述

无图像增强效果不好的原因分析

论文CLIPDraw: Exploring Text-to-Drawing Synthesisthrough Language-Image Encoders解释

在这里插入图片描述

论文StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation解释

在这里插入图片描述

个人理解

因为有很多图片可以和一个文本相匹配,对于我们人来说这些图片有一个根本和文本不相关,如果进行图像增强大概率会得到局部最优值。在计算损失函数之前对图片先进行增强,透过透视等变换,相关的图片不论如何变换和文本的相似度基本不会降低,而不相关的图像变换完之后一般会让相似度降低,这样就可以防止不相关图片对实验结果的影响。

这篇关于利用clip模型实现text2draw的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124419

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J