Python自适应光学模态星形小波分析和像差算法

2024-08-31 15:04

本文主要是介绍Python自适应光学模态星形小波分析和像差算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯星形小波分析像差测量 | 🎯对比傅里叶和小波分析 | 🎯定义多尺度图像质量度量,矩阵数据 | 🎯像差校正算法 | 🎯受激发射损耗显微镜布局 | 🎯干涉仪分支校准,求解正则化最小二乘问题计算控制矩阵 | 🎯像差理论多项式逼近算法

📜光学和散射用例

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python光学成像点源响应

荧光显微镜是一种光学显微镜,它使用荧光代替或补充散射、反射和衰减或吸收,来研究有机或无机物质的性质。“荧光显微镜”是指任何使用荧光生成图像的显微镜,无论是像落射荧光显微镜这样的简单装置,还是像共聚焦显微镜这样更复杂的设计,它都使用光学切片来获得更高分辨率的荧光图像。

目前使用的大多数荧光显微镜都是落射荧光显微镜,其中荧光团的激发和荧光的检测是通过同一光路(即通过物镜)进行的。这些显微镜在生物学中得到广泛应用,是更先进的显微镜设计的基础,例如共聚焦显微镜和全内反射荧光显微镜 。

荧光显微镜需要强烈的近单色照明,而卤素灯等一些广泛使用的光源无法提供这种照明。主要使用四种类型的光源,包括带有激发滤光片的氙弧灯或汞蒸气灯、激光器、超连续光源和高功率 LED。激光器最广泛用于更复杂的荧光显微镜技术,如共聚焦显微镜和全内反射荧光显微镜,而氙气灯、汞灯和带有二向色激发滤光片的 LED 通常用于宽视野荧光显微镜。通过将两个微透镜阵列放入宽视野荧光显微镜的照明路径中,可以实现高度均匀的照明,变异系数为 1-2%。

在荧光显微镜中,获取的图像始终是显微镜下实际物体的模糊表示。这种模糊由所谓的点扩展函数描述。点扩展函数描述物体中的单个点在图像中的样子。

光学显微镜中的图像形成过程是线性的:当同时对两个物体 A 和 B 进行成像时,结果等于独立成像物体的总和。由于这种线性特性,可以通过将物体分成更小的部分、对每个部分进行成像,然后对结果求和来计算任何物体的图像。如果将物体分成越来越小的部分,它最终会成为一组无限小的点物体。这些点物体中的每一个都会在图像中产生一个点扩展函数,并分别移位和缩放到相应点的位置和强度。因此,生成的图像是一组(通常重叠的)点扩展函数。这种图像形成过程在数学上可以用卷积方程表示:与成像装置的点扩展函数卷积的物体给出获取的图像。

点扩展函数可能与物体平面中的位置无关,在这种情况下,它被称为平移不变。此外,如果系统没有失真,则图像平面坐标通过放大倍数 M 与物体平面坐标呈线性关系,如下所示:
( x i , y i ) = ( M x o , M y o ) \left(x_i, y_i\right)=\left(M x_o, M y_o\right) (xi,yi)=(Mxo,Myo)
如果成像系统产生倒置图像,我们可以简单地将图像平面坐标轴视为与物体平面坐标轴相反。有了这两个假设,即点扩展函数是平移不变的并且没有失真,计算图像平面卷积积分就是一个简单的过程。在数学上,我们可以将物平面场表示为:
O ( x o , y o ) = ∬ O ( u , v ) δ ( x o − u , y o − v ) d u d v O\left(x_o, y_o\right)=\iint O(u, v) \delta\left(x_o-u, y_o-v\right) d u d v O(xo,yo)=O(u,v)δ(xou,yov)dudv
即,作为加权脉冲函数的总和,尽管这实际上也只是说明 2D delta 函数的移位特性。以上面的形式重写物体透射率函数允许我们将图像平面场计算为每个单独脉冲函数的图像的叠加,即使用相同的加权函数作为图像平面中加权点扩散函数的叠加如在物平面中,即 O ( x o , y o ) O\left(x_o, y_o\right) O(xo,yo)。在数学上,图像表示为:
I ( x i , y i ) = ∬ O ( u , v ) PSF ⁡ ( x i / M − u , y i / M − v ) d u d v I\left(x_i, y_i\right)=\iint O(u, v) \operatorname{PSF}\left(x_i / M-u, y_i / M-v\right) d u d v I(xi,yi)=O(u,v)PSF(xi/Mu,yi/Mv)dudv
其中 PSF ⁡ ( x i / M − u , y i / M − v ) \operatorname{PSF}\left(x_i / M-u, y_i / M-v\right) PSF(xi/Mu,yi/Mv)是脉冲函数 δ ( x o − u , y o − v ) \delta\left(x_o-u, y_o-v\right) δ(xou,yov)的图像。

Python计算荧光显微镜点扩散函数示例

import numpy
import mfs
from matplotlib import pyplotdef mfs_example(cmap='hot',savebin=False,savetif=False,savevol=False,plot=True,**kwargs,
):args = {'shape': (512, 512),  'dims': (5.0, 5.0),  'ex_wavelen': 488.0,  'em_wavelen': 520.0, 'num_aperture': 1.2,'refr_index': 1.333,'magnification': 1.0,'pinhole_radius': 0.05, 'pinhole_shape': 'square',}args.update(kwargs)obsvol = mfs.mfs(mfs.ISOTROPIC | mfs.CONFOCAL, **args)  exmfs = obsvol.exmfsemmfs = obsvol.emmfsgauss = gauss2 = mfs.mfs(mfs.GAUSSIAN | mfs.EXCITATION, **args  )assert exmfs is not Noneassert emmfs is not Noneprint(exmfs)print(emmfs)print(obsvol)print(gauss)print(gauss2)if savebin:emmfs.data.tofile('emmfs.bin')exmfs.data.tofile('exmfs.bin')gauss.data.tofile('gauss.bin')obsvol.data.tofile('obsvol.bin')if savetif:from tifffile import imwriteimwrite('emmfs.tif', emmfs.data)imwrite('exmfs.tif', exmfs.data)imwrite('gauss.tif', gauss.data)imwrite('obsvol.tif', obsvol.data)if savevol:from tifffile import imwriteimwrite('emmfs_vol.tif', emmfs.volume())imwrite('exmfs_vol.tif', exmfs.volume())imwrite('gauss_vol.tif', gauss.volume())imwrite('obsvol_vol.tif', obsvol.volume())if not plot:returnpyplot.rc('font', family='sans-serif', weight='normal')pyplot.figure(dpi=96, figsize=(9.5, 5.0), frameon=True, facecolor='w', edgecolor='w')pyplot.subplots_adjust(bottom=0.02, top=0.92, left=0.02, right=0.98, hspace=0.01, wspace=0.01)ax = exmfs.imshow(241, cmap=cmap)[0]emmfs.imshow(242, sharex=ax, sharey=ax, cmap=cmap)obsvol.imshow(243, sharex=ax, sharey=ax, cmap=cmap)gauss.imshow(244, sharex=ax, sharey=ax, cmap=cmap)i = 0mfs.imshow(245, data=exmfs.slice(i), sharex=ax, cmap=cmap)mfs.imshow(246, data=emmfs.slice(i), sharex=ax, cmap=cmap)mfs.imshow(247, data=obsvol.slice(i), sharex=ax, cmap=cmap)mfs.imshow(248, data=gauss.slice(i), sharex=ax, cmap=cmap)z = numpy.arange(0, gauss.dims.ou[0], gauss.dims.ou[0] / gauss.dims.px[0])r = numpy.arange(0, gauss.dims.ou[1], gauss.dims.ou[1] / gauss.dims.px[1])zr_max = 20.0pyplot.figure()pyplot.subplot(211)pyplot.title('mfs cross sections')pyplot.plot(r, exmfs[0], 'r-', label=exmfs.name + ' (r)')pyplot.plot(r, gauss2[0], 'r:', label='')pyplot.plot(r, obsvol[0], 'b-', label=obsvol.name + ' (r)')pyplot.plot(r, gauss[0], 'b:', label="")pyplot.plot(z, exmfs[:, 0], 'm-', label=exmfs.name + ' (z)')pyplot.plot(z, gauss2[:, 0], 'm:', label='')pyplot.plot(z, obsvol[:, 0], 'c-', label=obsvol.name + ' (z)')pyplot.plot(z, gauss[:, 0], 'c:', label='')pyplot.legend()pyplot.axis([0, zr_max, 0, 1])pyplot.subplot(212)pyplot.title('Residuals of gaussian approximation')pyplot.plot(r, exmfs[0] - gauss2[0], 'r-', label=exmfs.name + ' (r)')pyplot.plot(r, obsvol[0] - gauss[0], 'b-', label=obsvol.name + ' (r)')pyplot.plot(z, exmfs[:, 0] - gauss2[:, 0], 'm-', label=exmfs.name + ' (z)')pyplot.plot(z, obsvol[:, 0] - gauss[:, 0], 'c-', label=obsvol.name + ' (z)')pyplot.axis([0, zr_max, -0.25, 0.25])pyplot.tight_layout()pyplot.show()if __name__ == '__main__':mfs_example()

👉更新:亚图跨际

这篇关于Python自适应光学模态星形小波分析和像差算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124243

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地