生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器

2024-08-31 12:44

本文主要是介绍生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 在线读取iris数据集

import os
import pandas as pd# 下载
try:s = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'print('From URL:', s)df = pd.read_csv(s,header=None,encoding='utf-8')except HTTPError:s = 'iris.data'# 读取.data文件,不读取列名df = pd.read_csv(s,header=None, encoding='utf-8')df.tail()

2. 加载 Iris 数据集

从 scikit-learn 加载 Iris 数据集,第三列代表花瓣的长度,第四列代表花瓣的宽度。物种分类已经转换为整数标签,其中0 = Iris-Setosa,1 = Iris-Versicolor,2 = Iris-Virginia

# jupyter
%matplotlib inline
from sklearn import datasets
import numpy as npiris = datasets.load_iris()
# 提取dataframe的第3列和第4列数据
X = iris.data[:, [2, 3]]
# 分类标签
y = iris.target# 打印分类标签
print('Class labels:', np.unique(y))
# Class labels: [0 1 2]

3. 划分 Iris 数据集

将70%数据划分为 的训练集和30% 为测试集。

from sklearn.model_selection import train_test_split
# X_train, y_train为训练集数据和标签
# X_test, y_test为测试集数据和标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)# 打印各标签的数据包含的数据数量
print('Labels counts in y:', np.bincount(y))
print('Labels counts in y_train:', np.bincount(y_train))
print('Labels counts in y_test:', np.bincount(y_test))
# Labels counts in y: [50 50 50]
# Labels counts in y_train: [35 35 35]
# Labels counts in y_test: [15 15 15]

4. 标准化特征

from sklearn.preprocessing import StandardScalersc = StandardScaler()
sc.fit(X_train)
# 标准化训练数据X_train_std , X_test_std 
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

5. 通过scikit-learn训练感知器

学习速率 (learning rate): 在训练模型时用于梯度下降的一个变量。在每次迭代期间,梯度下降法都会将学习速率与梯度相乘,得出的乘积称为梯度步长,设置数据在在0-1之间

from sklearn.linear_model import Perceptron# eta0为学习率
# random_state随机生成器加权数值
ppn = Perceptron(eta0=0.1, random_state=1)
ppn.fit(X_train_std, y_train)
# Perceptron(eta0=0.1, random_state=1)# 打印测试数据集分类错误数量
y_pred = ppn.predict(X_test_std)
print('Misclassified examples: %d' % (y_test != y_pred).sum())
# Misclassified examples: 1# 获取感知器准确度
from sklearn.metrics import accuracy_score
print('Accuracy: %.3f' % accuracy_score(y_test, y_pred))
# Accuracy: 0.978print('Accuracy: %.3f' % ppn.score(X_test_std, y_test))
# Accuracy: 0.978

6. 训练感知器模型

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
from distutils.version import LooseVersiondef plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):# 绘图图形和颜色生成markers = ('o', 's', '^', 'v', '<')colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')cmap = ListedColormap(colors[:len(np.unique(y))])# 绘图x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))lab = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)lab = lab.reshape(xx1.shape)plt.contourf(xx1, xx2, lab, alpha=0.3, cmap=cmap)plt.xlim(xx1.min(), xx1.max())plt.ylim(xx2.min(), xx2.max())# 图加上分类样本for idx, cl in enumerate(np.unique(y)):plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=colors[idx],marker=markers[idx], label=f'Class {cl}', edgecolor='black')# 高亮显示测试数据集样本if test_idx:X_test, y_test = X[test_idx, :], y[test_idx]plt.scatter(X_test[:, 0],X_test[:, 1],c='none',edgecolor='black',alpha=1.0,linewidth=1,marker='o',s=100, label='Test set')        # 使用标准化数据训练一个感知器模型
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))# 绘图
plot_decision_regions(X=X_combined_std, y=y_combined,classifier=ppn, test_idx=range(105, 150))
plt.xlabel('Petal length [standardized]')
plt.ylabel('Petal width [standardized]')
plt.legend(loc='upper left')plt.tight_layout()
plt.show()

训练的感知器预测标签结果

从下图可以看出,对于class 1和class2 标签,有个别样本分类错误,无颜色的黑色圈为测试数据集样本。预测结果

机器学习文章

生信机器学习入门1 - 数据预处理与线性回归(Linear regression)预测

生信机器学习入门2 - 机器学习基本概念

这篇关于生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123944

相关文章

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三