梯度下降算法实现

2024-08-31 03:32
文章标签 算法 实现 梯度 下降

本文主要是介绍梯度下降算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分治方法:先分成n×n个点进行搜索,选择最低的点,对最低的点再分成n×n份再次进行搜索,选择最小的值,反复如此,找到最小值。但是这对于凸函数是较为有用的,对于不规则的函数,可能搜索到的是极小值点(局部最优点),而不是最小值点(全局最优点)。

Gradient Descent Algorithm : 梯度下降算法(贪心思想,局部最优)
Gradient : 梯度,梯度大于0上升,梯度小于0下降,所以参数向梯度的反方向更新。
w = w − x g ′ ( w ) w=w-xg'(w)w=w−xg 

 (w)
x:学习率

损失函数的局部最优点比较少,但是我们有可能遇到鞍点,鞍点的导数等于0(梯度等于0, g ′ ( w ) = 0 g'(w)=0g 

 (w)=0),这时候参数无法更新。

对损失函数求导,求参数更新公式:

import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]w = 1.0  # y = x * w, w的初始值def forward(x):return x * wdef cost(xs, xy):cost = 0for x, y in zip(xs, xy):y_pred = forward(x)cost += (y_pred - y) ** 2return cost / len(xs)def gradient(xs, ys):grad = 0for x, y in zip(xs, ys):grad += 2 * x * (x * w - y)return grad / len(xs)def gradient(xs, ys):grad = 0for x, y in zip(xs, ys):grad += 2 * x * (x * w - y)return grad / len(xs)loss_list = []
trainnum_list = []
print("Predict (before training)", 4, forward(4)) # 训练前x = 4,对应预测的y值
for epoch in range(100):cost_val = cost(x_data, y_data)grad_val = gradient(x_data, y_data)w -= 0.01 * grad_valprint("Epoch: ", epoch, "w = ", w, "loss = ", cost_val)loss_list.append(cost_val)trainnum_list.append(epoch)
print("Predict(after training)", 4, forward(4))  # 训练后x = 4,对应预测的y值

 

画出loss的变化趋势:

plt.plot(trainnum_list, loss_list)
plt.ylabel("Cost")
plt.xlabel("Epoch")
plt.show()

 

 

import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]w = 1.0  # y = x * w, w的初始值def forward(x):return x * wdef loss(x, y):y_pred = forward(x)return (y_pred - y) ** 2def gradient(x, y):return 2 * x * (x * w - y)loss_list = []
trainnum_list = []
print("Predict (before training)", 4, forward(4)) # 训练前x = 4,对应预测的y值
for epoch in range(100):for x, y in zip(x_data, y_data):grad = gradient(x, y)w -= 0.01 * gradprint("\tgrad", x, y, grad)l = loss(x, y)print("Epoch: ", epoch, "w = ", w, "loss = ", l)loss_list.append(l)trainnum_list.append(epoch)
print("Predict(after training)", 4, forward(4))  # 训练后x = 4,对应预测的y值plt.plot(trainnum_list, loss_list)
plt.ylabel("Loss")
plt.xlabel("Epoch")
plt.show()

这篇关于梯度下降算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122760

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达