数据结构(邓俊辉)学习笔记】串 12——BM_BC算法:性能分析

2024-08-30 11:20

本文主要是介绍数据结构(邓俊辉)学习笔记】串 12——BM_BC算法:性能分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 最好情况
  • 2. 最坏情况

1. 最好情况

在这里插入图片描述

以下,就让我们从最好情况的角度,来考察坏字符策略的性能。实际上,在最好情况下的性能之好,要远远超过我们的想象。具体来说,此时的时间成本可以度量为 O(n/m)。没错,除法。你能构造出这样的一个具体实例吗?这就是一个:

可以看到,模式串完全由0组成,而文本串呢?则由与模式串等长的若干个片段依次拼接而成。在每一个片段中,末字符都不是0,比如说取作1,而其余的字符实质上都无所谓,因此笼统的记作 x。我不妨就此例来走一遍 BM 算法。

  1. 第一次对齐的位置在这里,而首次比对就是0/1的失配。在这里,0就是坏字符,而且在模式串中,根本就找不到足以与 1 匹配的字符。
  2. 于是,BM法将会把模式串整体的移过这个失配的位置,并使之与文本串中的下一个片段彼此对齐。而接下来的故事,与刚才的那个片段完全一样。首先末字布 0 无法与 1 匹配,而且其余的 0 也不能与之匹配。
  3. 因此,算法将再次整体的后移模式串。以致再次、再再次、持续地整体移动下去。

纵观整个过程,每经过常数次的比对,我们就可以向后整体的移动 m 个字符。既然文本串累计不过 n 个字符,因此在这种情况下,算法至多会移动 n/m 次。

由此可见,在这种情况下,算法的确只需要运行这么多的时间,即便是相对于 KMP 而言,这也是一个极大的提高,更不用说蛮力算法了。这个例子并不失一般性,实际上只要 P 中的字符都是坏字符,那么每次我们都可以整体地对它进行移动,也就是说我们只需要常数次的比较,就可以整体地排除掉 m 的对齐位置。

由此可见,如果说 KMP 算法是个利用经验的高手,那么 BM 算法则是非常善于借鉴教训的高手。从这个意义上讲,BM 算法更加欢迎失败比对的出现。那么在什么情况下更容易出现失败的比对呢?

也就是说,对于任何一对随机出现的字符所做的比对,失配的概率在什么情况下更小呢?在这里我们再次回到那样一个重要的指标,也就是字母表的规模。实际上字母表的规模越大,单次匹配成功的概率也就越小,失配的概率也就越大,从而 BM 算法的优势也就更为明显

比如在处理汉字甚至 unicode 编码时,BM算法就是再适合不过的了。

2. 最坏情况

然而另一方面很遗憾,BM算法在最差情况下的性能也的确非常差。

具体来说,它的算法复杂度有可能会退化到蛮力算法的水平,也就是 O(n*m)。就此,你能举出一个具体的实例吗?我可以给你一点提示,你不妨去参考一下蛮力算法最坏情况的那个实例。
在这里插入图片描述
是的,我想你已经想到了,就是这个。这一次文本串倒是完全由0组成的,而模式串也几乎是由 0 组成的,唯一的例外是它的首字符。按照 BM 算法的流程,我们首先需要从末字符开始进行比对,而且我们会经历一系列的成功,直到最后一步才失败。可以看到,在这次失败之前,我们已经花费了 O(m) 的成本。

然而最糟糕的还不是这个,因为我们花费了如此之高的成本所换来的那个教训,居然对我们不会有太多的帮助。因为此时正属于我们此前所讲的那种最为特殊的情况,也就是说坏字符的替代者应该是 0。但是在模式上中,最后出现的那个 0 过于靠后,以至于如果我们需要将它与此前的适配字符对齐,将导致模式串的左移而不是右移。因此在这种情况下,我们只好搬出那个假想的通配哨兵,并用那通配的哨兵与这个失配的字符相对齐。

非常可惜,这样的效果只相当于模式串向右移动一个单位。没错,我们每花费 O(m) 的成本,换来的收获只是向后移动了一步,而总体共有 n。因此在这种情况下的总体计算成本的确应该是 n 与 m 的乘积。
在这里插入图片描述

我们不妨来反思一下, BM 算法当前的这个版本为何还有可能会出现如此之差的情况呢?没错,经验。我们已经看到 BM 算法目前的这个版本的确已经能够很好地借鉴教训。也正因为此,它才能够在最好情况下有出色的表现。然而,很遗憾,到目前为止,它还没能够有效地利用好经验。具体来说,也就是此前的那些成功比对所提供的有益信息。实际上,完整的 BM 算法的确也可以同时很好地利用这方面的信息。

因此,我们需要给 BM 算法增加一个策略,也就是所谓的好后缀策略。这个策略再加上我们刚刚介绍的坏字符策略,就可以使得 BM 算法变得几乎完美。

这篇关于数据结构(邓俊辉)学习笔记】串 12——BM_BC算法:性能分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120674

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3