昇思AI框架实践2:基于T5的SQL语句生成模型推理

2024-08-30 03:52

本文主要是介绍昇思AI框架实践2:基于T5的SQL语句生成模型推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 MindSpore 基于T5的SQL语句生成项目实施

基于T5的SQL语句生成项目介绍

  • 本项目旨在开发一个基于T5-small模型的自然语言转SQL语句生成器。该生成器能够将用户以自然语言形式提出的查询请求转换为对应的SQL查询语句,从而使得即使是不熟悉SQL语言的用户也能够轻松地从数据库中检索所需信息。
  • 本项目使用HuggingFace中经过大量英文语料预训练的T5-small模型并对其模型迁移,将其变为MindSpore可用的模型。

项目地址:昇思大模型平台

 

项目mindspore环境安装,参见:昇思AI框架实践1:安装MindSpoe和MindFormers-CSDN博客

 

 下载基于T5的SQL语句生成模型

项目地址:昇思大模型平台

模型文件下载地址:昇思大模型平台 

前面走了弯路,使用git clone下载了模型。其实mindformers支持自动下载模型,所以只要在代码里设定好模型的名字为t5_small即可

import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizert5 = T5ForConditionalGeneration.from_pretrained(”t5_small“)

使用git下载模型(不必须)

模型位置:昇思大模型平台

使用git下载

git clone https://source-xihe-mindspore.osinfra.cn/zhanglingyun2023/Text2SQL_model.git

MindSpoe模型推理lenet模型例子

加载lenet模型例子

from mindspore import load_checkpoint, Tensor
from mindspore.common import set_seed
from mindvision.classification.models import lenet
from mindspore.train import Model# 定义模型
net = lenet(num_classes=10, pretrained=False)# 加载参数
param_dict = load_checkpoint("./lenet/lenet-1_1875.ckpt")# 将参数加载到模型中
load_param_into_net(net, param_dict)

 推理lenet模型

# 假设data是一个包含输入数据的字典,labels是实际标签
output = model.predict(Tensor(data['image']))
predicted = np.argmax(output.asnumpy(), axis=1)
print(f'Predicted: "{predicted}", Actual: "{labels}"')

后来发现可以直接用MindFormers推理,非常简单方便。

使用MindFormers推理 

MindFormers里面给的例子:

python run_mindformer.py --config {CONFIG_PATH} --run_mode {train/finetune/eval/predict}

根据这个例子,改写的命令应该是:

python mindformers/run_mindformer.py --config Text2SQL_model/text2sql.yaml --run_mode Text2SQL_model/text2sql.ckpt

后来发现了该项目里面gradio app的例子代码,参考该代码,MindFormers在python里面使用起来更简单方便。

项目中的gradio app例子代码

import gradio as gr
import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizermodel_path = './'
t5 = T5ForConditionalGeneration.from_pretrained(model_path)
tokenizer = T5Tokenizer.from_pretrained("t5_small")
t5.set_train(False)
mindspore.set_context(mode=0, device_id=0)def generate_SQL(text):text = "translate English to SQL: %s </s>" % textinputs = tokenizer(text)outputs = t5.generate(inputs["input_ids"],do_sample=False)response = tokenizer.decode(outputs,skip_special_tokens=True)[0]return response# 创建 Gradio 界面
iface = gr.Interface(fn=generate_SQL,inputs=[gr.Textbox(lines=2, placeholder="请输入需求"),],outputs=gr.Textbox(),title="SQL语句生成器",description="请输入英文需求,自动生成SQL语句。\n 例如:Search for the names of all employees over the age of 30。"
)# 运行应用程序
iface.launch()

经过测试,发现可以直接在t5 = T5ForConditionalGeneration.from_pretrained(model_path) 这句话里写模型名字,如:t5 = T5ForConditionalGeneration.from_pretrained("t5_small")系统会自动下载模型。当然也可以像例子那样写,手工下载模型文件到相应的目录。

根据例子代码改写的推理代码

如果没有手工下载模型,那就在设置里写上模型名字"t5_small"即可。

t5 = T5ForConditionalGeneration.from_pretrained(”t5_small“)

tokenizer = T5Tokenizer.from_pretrained("t5_small")

import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizer# model_path = './'
# t5 = T5ForConditionalGeneration.from_pretrained(model_path)
t5 = T5ForConditionalGeneration.from_pretrained("t5_small")
tokenizer = T5Tokenizer.from_pretrained("t5_small")
t5.set_train(False)
mindspore.set_context(mode=1, device_id=0)def generate_SQL(text):text = "translate English to SQL: %s </s>" % textinputs = tokenizer(text)outputs = t5.generate(inputs["input_ids"],do_sample=False)response = tokenizer.decode(outputs,skip_special_tokens=True)[0]return responsedescription="请输入英文需求,自动生成SQL语句。\n 例如:Search for the names of all employees over the age of 30。"
inputs = input(description)
output = generate_SQL(inputs)
print (output)
while True:inputs = input(description)if inputs=="q" or inputs=="0" :breakoutput = generate_SQL(inputs)print(output)

推理结果

2024-08-29 13:30:48,564 - mindformers[mindformers/generation/text_generator.py:478] - INFO - total time: 19.149714946746826 s; generated tokens: 13 tokens; generate speed: 0.678861279979964 tokens/s

SELECT User FROM table WHERE Name = hello

共计用时19秒,在cpu下速度算是可以了。

问题:Search for the names of all employees over the age of 30。"

回答:SELECT Name FROM table WHERE Label = "Stu_Db" AND Age > 30

这篇关于昇思AI框架实践2:基于T5的SQL语句生成模型推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119723

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映