昇思AI框架实践2:基于T5的SQL语句生成模型推理

2024-08-30 03:52

本文主要是介绍昇思AI框架实践2:基于T5的SQL语句生成模型推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 MindSpore 基于T5的SQL语句生成项目实施

基于T5的SQL语句生成项目介绍

  • 本项目旨在开发一个基于T5-small模型的自然语言转SQL语句生成器。该生成器能够将用户以自然语言形式提出的查询请求转换为对应的SQL查询语句,从而使得即使是不熟悉SQL语言的用户也能够轻松地从数据库中检索所需信息。
  • 本项目使用HuggingFace中经过大量英文语料预训练的T5-small模型并对其模型迁移,将其变为MindSpore可用的模型。

项目地址:昇思大模型平台

 

项目mindspore环境安装,参见:昇思AI框架实践1:安装MindSpoe和MindFormers-CSDN博客

 

 下载基于T5的SQL语句生成模型

项目地址:昇思大模型平台

模型文件下载地址:昇思大模型平台 

前面走了弯路,使用git clone下载了模型。其实mindformers支持自动下载模型,所以只要在代码里设定好模型的名字为t5_small即可

import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizert5 = T5ForConditionalGeneration.from_pretrained(”t5_small“)

使用git下载模型(不必须)

模型位置:昇思大模型平台

使用git下载

git clone https://source-xihe-mindspore.osinfra.cn/zhanglingyun2023/Text2SQL_model.git

MindSpoe模型推理lenet模型例子

加载lenet模型例子

from mindspore import load_checkpoint, Tensor
from mindspore.common import set_seed
from mindvision.classification.models import lenet
from mindspore.train import Model# 定义模型
net = lenet(num_classes=10, pretrained=False)# 加载参数
param_dict = load_checkpoint("./lenet/lenet-1_1875.ckpt")# 将参数加载到模型中
load_param_into_net(net, param_dict)

 推理lenet模型

# 假设data是一个包含输入数据的字典,labels是实际标签
output = model.predict(Tensor(data['image']))
predicted = np.argmax(output.asnumpy(), axis=1)
print(f'Predicted: "{predicted}", Actual: "{labels}"')

后来发现可以直接用MindFormers推理,非常简单方便。

使用MindFormers推理 

MindFormers里面给的例子:

python run_mindformer.py --config {CONFIG_PATH} --run_mode {train/finetune/eval/predict}

根据这个例子,改写的命令应该是:

python mindformers/run_mindformer.py --config Text2SQL_model/text2sql.yaml --run_mode Text2SQL_model/text2sql.ckpt

后来发现了该项目里面gradio app的例子代码,参考该代码,MindFormers在python里面使用起来更简单方便。

项目中的gradio app例子代码

import gradio as gr
import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizermodel_path = './'
t5 = T5ForConditionalGeneration.from_pretrained(model_path)
tokenizer = T5Tokenizer.from_pretrained("t5_small")
t5.set_train(False)
mindspore.set_context(mode=0, device_id=0)def generate_SQL(text):text = "translate English to SQL: %s </s>" % textinputs = tokenizer(text)outputs = t5.generate(inputs["input_ids"],do_sample=False)response = tokenizer.decode(outputs,skip_special_tokens=True)[0]return response# 创建 Gradio 界面
iface = gr.Interface(fn=generate_SQL,inputs=[gr.Textbox(lines=2, placeholder="请输入需求"),],outputs=gr.Textbox(),title="SQL语句生成器",description="请输入英文需求,自动生成SQL语句。\n 例如:Search for the names of all employees over the age of 30。"
)# 运行应用程序
iface.launch()

经过测试,发现可以直接在t5 = T5ForConditionalGeneration.from_pretrained(model_path) 这句话里写模型名字,如:t5 = T5ForConditionalGeneration.from_pretrained("t5_small")系统会自动下载模型。当然也可以像例子那样写,手工下载模型文件到相应的目录。

根据例子代码改写的推理代码

如果没有手工下载模型,那就在设置里写上模型名字"t5_small"即可。

t5 = T5ForConditionalGeneration.from_pretrained(”t5_small“)

tokenizer = T5Tokenizer.from_pretrained("t5_small")

import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizer# model_path = './'
# t5 = T5ForConditionalGeneration.from_pretrained(model_path)
t5 = T5ForConditionalGeneration.from_pretrained("t5_small")
tokenizer = T5Tokenizer.from_pretrained("t5_small")
t5.set_train(False)
mindspore.set_context(mode=1, device_id=0)def generate_SQL(text):text = "translate English to SQL: %s </s>" % textinputs = tokenizer(text)outputs = t5.generate(inputs["input_ids"],do_sample=False)response = tokenizer.decode(outputs,skip_special_tokens=True)[0]return responsedescription="请输入英文需求,自动生成SQL语句。\n 例如:Search for the names of all employees over the age of 30。"
inputs = input(description)
output = generate_SQL(inputs)
print (output)
while True:inputs = input(description)if inputs=="q" or inputs=="0" :breakoutput = generate_SQL(inputs)print(output)

推理结果

2024-08-29 13:30:48,564 - mindformers[mindformers/generation/text_generator.py:478] - INFO - total time: 19.149714946746826 s; generated tokens: 13 tokens; generate speed: 0.678861279979964 tokens/s

SELECT User FROM table WHERE Name = hello

共计用时19秒,在cpu下速度算是可以了。

问题:Search for the names of all employees over the age of 30。"

回答:SELECT Name FROM table WHERE Label = "Stu_Db" AND Age > 30

这篇关于昇思AI框架实践2:基于T5的SQL语句生成模型推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119723

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA