昇思AI框架实践2:基于T5的SQL语句生成模型推理

2024-08-30 03:52

本文主要是介绍昇思AI框架实践2:基于T5的SQL语句生成模型推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 MindSpore 基于T5的SQL语句生成项目实施

基于T5的SQL语句生成项目介绍

  • 本项目旨在开发一个基于T5-small模型的自然语言转SQL语句生成器。该生成器能够将用户以自然语言形式提出的查询请求转换为对应的SQL查询语句,从而使得即使是不熟悉SQL语言的用户也能够轻松地从数据库中检索所需信息。
  • 本项目使用HuggingFace中经过大量英文语料预训练的T5-small模型并对其模型迁移,将其变为MindSpore可用的模型。

项目地址:昇思大模型平台

 

项目mindspore环境安装,参见:昇思AI框架实践1:安装MindSpoe和MindFormers-CSDN博客

 

 下载基于T5的SQL语句生成模型

项目地址:昇思大模型平台

模型文件下载地址:昇思大模型平台 

前面走了弯路,使用git clone下载了模型。其实mindformers支持自动下载模型,所以只要在代码里设定好模型的名字为t5_small即可

import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizert5 = T5ForConditionalGeneration.from_pretrained(”t5_small“)

使用git下载模型(不必须)

模型位置:昇思大模型平台

使用git下载

git clone https://source-xihe-mindspore.osinfra.cn/zhanglingyun2023/Text2SQL_model.git

MindSpoe模型推理lenet模型例子

加载lenet模型例子

from mindspore import load_checkpoint, Tensor
from mindspore.common import set_seed
from mindvision.classification.models import lenet
from mindspore.train import Model# 定义模型
net = lenet(num_classes=10, pretrained=False)# 加载参数
param_dict = load_checkpoint("./lenet/lenet-1_1875.ckpt")# 将参数加载到模型中
load_param_into_net(net, param_dict)

 推理lenet模型

# 假设data是一个包含输入数据的字典,labels是实际标签
output = model.predict(Tensor(data['image']))
predicted = np.argmax(output.asnumpy(), axis=1)
print(f'Predicted: "{predicted}", Actual: "{labels}"')

后来发现可以直接用MindFormers推理,非常简单方便。

使用MindFormers推理 

MindFormers里面给的例子:

python run_mindformer.py --config {CONFIG_PATH} --run_mode {train/finetune/eval/predict}

根据这个例子,改写的命令应该是:

python mindformers/run_mindformer.py --config Text2SQL_model/text2sql.yaml --run_mode Text2SQL_model/text2sql.ckpt

后来发现了该项目里面gradio app的例子代码,参考该代码,MindFormers在python里面使用起来更简单方便。

项目中的gradio app例子代码

import gradio as gr
import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizermodel_path = './'
t5 = T5ForConditionalGeneration.from_pretrained(model_path)
tokenizer = T5Tokenizer.from_pretrained("t5_small")
t5.set_train(False)
mindspore.set_context(mode=0, device_id=0)def generate_SQL(text):text = "translate English to SQL: %s </s>" % textinputs = tokenizer(text)outputs = t5.generate(inputs["input_ids"],do_sample=False)response = tokenizer.decode(outputs,skip_special_tokens=True)[0]return response# 创建 Gradio 界面
iface = gr.Interface(fn=generate_SQL,inputs=[gr.Textbox(lines=2, placeholder="请输入需求"),],outputs=gr.Textbox(),title="SQL语句生成器",description="请输入英文需求,自动生成SQL语句。\n 例如:Search for the names of all employees over the age of 30。"
)# 运行应用程序
iface.launch()

经过测试,发现可以直接在t5 = T5ForConditionalGeneration.from_pretrained(model_path) 这句话里写模型名字,如:t5 = T5ForConditionalGeneration.from_pretrained("t5_small")系统会自动下载模型。当然也可以像例子那样写,手工下载模型文件到相应的目录。

根据例子代码改写的推理代码

如果没有手工下载模型,那就在设置里写上模型名字"t5_small"即可。

t5 = T5ForConditionalGeneration.from_pretrained(”t5_small“)

tokenizer = T5Tokenizer.from_pretrained("t5_small")

import mindspore
from mindformers import T5ForConditionalGeneration, T5Tokenizer# model_path = './'
# t5 = T5ForConditionalGeneration.from_pretrained(model_path)
t5 = T5ForConditionalGeneration.from_pretrained("t5_small")
tokenizer = T5Tokenizer.from_pretrained("t5_small")
t5.set_train(False)
mindspore.set_context(mode=1, device_id=0)def generate_SQL(text):text = "translate English to SQL: %s </s>" % textinputs = tokenizer(text)outputs = t5.generate(inputs["input_ids"],do_sample=False)response = tokenizer.decode(outputs,skip_special_tokens=True)[0]return responsedescription="请输入英文需求,自动生成SQL语句。\n 例如:Search for the names of all employees over the age of 30。"
inputs = input(description)
output = generate_SQL(inputs)
print (output)
while True:inputs = input(description)if inputs=="q" or inputs=="0" :breakoutput = generate_SQL(inputs)print(output)

推理结果

2024-08-29 13:30:48,564 - mindformers[mindformers/generation/text_generator.py:478] - INFO - total time: 19.149714946746826 s; generated tokens: 13 tokens; generate speed: 0.678861279979964 tokens/s

SELECT User FROM table WHERE Name = hello

共计用时19秒,在cpu下速度算是可以了。

问题:Search for the names of all employees over the age of 30。"

回答:SELECT Name FROM table WHERE Label = "Stu_Db" AND Age > 30

这篇关于昇思AI框架实践2:基于T5的SQL语句生成模型推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119723

相关文章

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用