字节开源 FLUX Dev 的 Haper SD Lora,只需要 8 步或者 16 步就可以用 FLUX 生成图片! 文章附模型下载链接

本文主要是介绍字节开源 FLUX Dev 的 Haper SD Lora,只需要 8 步或者 16 步就可以用 FLUX 生成图片! 文章附模型下载链接,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024 年 8 月 26 日,字节开源了 FLUX Dev 的 Haper SD Lora。 只需要 8 步或者 16 步就可以用 FLUX 生成图片,大幅减少 FLUX 的生成时间。

建议 LoRA 比例约为 0.125,该比例可适应训练和指导,比例可保持在 3.5。较低步骤的 LoRA 即将推出。

大家可以点击下面文章链接, 文章包含模型下载链接,试用地址,项目介绍等,也欢迎大家关注公众号AIGC Studio。

字节开源 FLUX Dev 的 Haper SD Lora,只需要 8 步或者 16 步就可以用 FLUX 生成图片!

为了让更多的人体验到Hyper SD Lora的神奇效果,字节跳动在Huggingface上设立了演示空间。在这里可以直观地感受到FLUX8步Lora的绘图效果,亲眼见证AI绘图技术的飞跃。

相关链接

论文地址:https://arxiv.org/pdf/2404.13686 项目地址:https://hyper-sd.github.io/

模型链接:https://huggingface.co/ByteDance/Hyper-SD

试用地址:https://huggingface.co/spaces/ByteDance/Hyper-FLUX-8Steps-LoRA

论文阅读

Hyper-SD:用于高效图像合成的轨迹分段一致性模型

摘要

最近,出现了一系列考虑扩散的蒸馏算法,以减轻与扩散模型 (DM) 的多步推理过程相关的计算开销。当前的蒸馏技术通常分为两个不同的方面:i)ODE 轨迹保存;ii)ODE 轨迹重构。然而,这些方法存在严重的性能下降或领域转移。

为了解决这些限制,我们提出了Hyper-SD,这是一个新颖的框架,它协同融合了 ODE 轨迹保存和重构的优点,同时在步骤压缩期间保持近乎无损的性能。首先,我们引入轨迹分段一致性蒸馏,以在预定义的时间步长段内逐步执行一致性蒸馏,这有助于从高阶角度保留原始 ODE 轨迹。其次,我们结合人工反馈学习来提高模型在低步长范围内的性能,并减轻蒸馏过程造成的性能损失。第三,我们集成了分数蒸馏,以进一步提高模型的低步生成能力,并首次尝试利用统一的 LoRA 支持所有步骤的推理过程。

大量实验和用户研究表明,对于 SDXL 和 SD1.5,Hyper-SD 在 1 到 8 个推理步骤中都实现了 SOTA 性能。例如,在 1 步推理中,Hyper-SDXL 在 CLIP 分数上超过 SDXL-Lightning +0.68 ,在 Aes 分数上 超过 +0.51 。

方法

Hyper-SD 采用两阶段渐进式一致性蒸馏。第一阶段在两个不同的时间段 [0, T/2] 和 [T/2 , T] 进行一致性蒸馏,以获得两段一致性 ODE。然后,在后续阶段采用此 ODE 轨迹来训练全局一致性模型。

实验

Hyper-SD 与其他方法之间的视觉比较。从第一列到第四列,这些图像的提示分别是

  1. 一只穿着白色 T 恤的狗,上面写着 "hyper" 一词…

  2. 抽象美、接近完美、纯粹的形式、黄金比例、简约、未完成…

  3. 一颗水晶心躺在宁静的禅宗花园的苔藓上……

  4. 科学家雄鹿的拟人化艺术,维多利亚风格的服装,由 krenz cushart 创作...。

Hyper-SD 与 SDXL 架构上其他基于 LoRA 的加速方法之间的定性比较。

Hyper-SD 与其他基于 LoRA 的加速方法在 SD15 架构上的定性比较。

Hyper-SD 与现有的专注于加速的方法相比表现出了显著的优势,并在 SD1.5 和 SDXL 架构上获得了更多的用户偏好。

具有不同步骤的 Hyper-SD LoRA 可应用于不同的基础模型,并持续生成高质量图像

Hyper-SD 的统一 LoRA 与 ControlNet 兼容。示例以涂鸦或精明图像为条件。

结论

我们提出了 Hyper-SD,这是一个统一的框架,可最大限度地提高扩散模型的几步生成能力,在 SDXL 和 SD15 的基础上实现了新的 SOTA 性能。通过采用轨迹分段一致性蒸馏,我们增强了蒸馏过程中的轨迹保存能力,接近原始模型的生成能力。然后,人工反馈学习和变分分数蒸馏激发了少步推理的潜力,从而为生成模型提供了更优化和更高效的轨迹。我们为 SDXL 和 SD15 开源了从 1 到 8 步推理的 LoRA,以及专用的一步 SDXL 模型,旨在进一步推动生成 AI 社区的发展。

这篇关于字节开源 FLUX Dev 的 Haper SD Lora,只需要 8 步或者 16 步就可以用 FLUX 生成图片! 文章附模型下载链接的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117528

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

SQL server数据库如何下载和安装

《SQLserver数据库如何下载和安装》本文指导如何下载安装SQLServer2022评估版及SSMS工具,涵盖安装配置、连接字符串设置、C#连接数据库方法和安全注意事项,如混合验证、参数化查... 目录第一步:打开官网下载对应文件第二步:程序安装配置第三部:安装工具SQL Server Manageme

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置