分类预测|基于灰狼GWO优化BP神经网络的数据分类预测Matlab程序GWO-BP|基于鲸鱼WOA优化BP神经网络的数据分类预测Matlab程序WOA-BP

本文主要是介绍分类预测|基于灰狼GWO优化BP神经网络的数据分类预测Matlab程序GWO-BP|基于鲸鱼WOA优化BP神经网络的数据分类预测Matlab程序WOA-BP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于灰狼GWO优化BP神经网络的数据分类预测Matlab程序GWO-BP|基于鲸鱼WOA优化BP神经网络的数据分类预测Matlab程序WOA-BP

文章目录

  • 前言
    • 分类预测|基于灰狼GWO优化BP神经网络的数据分类预测Matlab程序GWO-BP|基于鲸鱼WOA优化BP神经网络的数据分类预测Matlab程序WOA-BP
  • 一、GWO-BP模型
      • 1. BP神经网络概述
      • 2. 灰狼优化算法概述
      • 3. 将GWO与BP神经网络结合的步骤
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

分类预测|基于灰狼GWO优化BP神经网络的数据分类预测Matlab程序GWO-BP|基于鲸鱼WOA优化BP神经网络的数据分类预测Matlab程序WOA-BP

一、GWO-BP模型

明白了,以下是灰狼优化(GWO)与BP神经网络结合用于数据分类预测的详细步骤和原理,但不包括代码实现:

1. BP神经网络概述

BP(反向传播)神经网络是一种多层前馈神经网络,主要由以下几部分组成:

  • 输入层:接收数据特征。
  • 隐藏层:包含多个神经元,通过激活函数引入非线性。
  • 输出层:生成预测结果,通常使用Softmax等函数进行分类。

训练BP神经网络的目标是最小化损失函数,这通常通过梯度下降方法进行优化,使用反向传播算法计算梯度,并更新权重和偏置。

2. 灰狼优化算法概述

灰狼优化(GWO)是一种模仿灰狼捕猎行为的群体智能优化算法,主要包括以下核心行为:

  • 包围猎物:灰狼围绕猎物移动,逐步接近猎物。
  • 追踪猎物:灰狼根据猎物的位置调整自己的位置。
  • 攻击猎物:灰狼根据当前的最优解来更新其位置,以达到猎物。

GWO算法的关键操作包括:

  1. 初始化:随机生成若干个初始解(灰狼的位置)。
  2. 评估适应度:计算每个解的适应度(通常是目标函数值)。
  3. 更新位置:根据当前最优解(α狼)及其他较优解(β狼、δ狼)更新灰狼的位置。
  4. 迭代:重复更新位置和评估适应度的过程,直到满足终止条件(如最大迭代次数或适应度阈值)。

3. 将GWO与BP神经网络结合的步骤

  1. 初始化灰狼的位置

    • 随机生成一组灰狼的位置,每个位置代表BP神经网络的权重和偏置。
  2. 定义适应度函数

    • 适应度函数通常是BP神经网络的损失函数,如交叉熵损失或均方误差。适应度函数用于衡量当前权重和偏置组合的好坏。
  3. 评估适应度

    • 使用每个灰狼的位置(即权重和偏置)训练BP神经网络,并计算其在训练集上的损失值。这个损失值即为适应度。
  4. 更新位置

    • 根据当前最优解(α狼)、次优解(β狼和δ狼)的位置信息,更新每只灰狼的位置。更新过程模拟灰狼的捕猎行为,包括包围、追踪和攻击。
  5. 迭代

    • 重复适应度评估和位置更新的过程。每次迭代后,更新α狼、β狼和δ狼的位置,逐步优化网络的权重和偏置。
  6. 输出结果

    • 最终的α狼位置即为最优的BP神经网络权重和偏置。用这些最优权重和偏置重新训练BP神经网络,并在测试集上进行评估。

总结

将灰狼优化算法与BP神经网络结合,可以有效地优化神经网络的权重和偏置,从而提升分类预测的性能。GWO算法通过模拟灰狼的捕猎行为来全局搜索最优解,相比于传统的梯度下降方法,可以避免陷入局部最优解,并提高网络的训练效果。

二、实验结果

在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可 25米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于灰狼GWO优化BP神经网络的数据分类预测Matlab程序GWO-BP|基于鲸鱼WOA优化BP神经网络的数据分类预测Matlab程序WOA-BP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117438

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并