Vitis AI 基本认知(Tiny-VGG 标签获取+预测后处理)

2024-08-29 06:04

本文主要是介绍Vitis AI 基本认知(Tiny-VGG 标签获取+预测后处理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 简介

2. 解析

2.1 获取标签

2.1.1 载入数据集

2.1.2 标签-Index

2.1.3 保存和读取类别标签

2.2 读取单个图片

2.3 载入模型并推理

2.3.1 tiny-vgg 模型结构

2.3.2 运行推理

 2.4 置信度柱状图

2.5 预测标签

3. 完整代码

4. 总结


1. 简介

本博文在《Vitis AI 基本认知(Tiny-VGG 项目代码详解)-CSDN博客》基础上,详细介绍如何使用TensorFlow框架进行单个图片的推理,从获取和处理数据集的标签开始,到模型的加载与推理,再到结果的可视化展示。关键信息如下:

  • 获取数据集的标签
  • 保存和读取类别标签
  • 加载模型并推理
  • 绘制图像
  • 使用中文标签
  • 置信度柱状图

2. 解析

2.1 获取标签

2.1.1 载入数据集

通过 image_dataset_from_directory 方法

vali_dataset = tf.keras.preprocessing.image_dataset_from_directory('./dataset/class_10_val/val_images/',image_size=(64, 64),batch_size=32)

取出一个图片,并查看其标签:

for images, labels in vali_dataset.take(1):# 取出第一个图片和标签image = images[0].numpy().astype("uint8")label = labels[0].numpy()# 显示图片plt.figure(figsize=(2, 2))plt.imshow(image)plt.title(f"Label: {label}")plt.axis('off')plt.show()

2.1.2 标签-Index

查看类别标签及其 Index:

class_names = vali_dataset.class_namesfor i, class_name in enumerate(class_names):print(f"Class name: {class_name:<4}, Index: {i}")
---
Class name: 咖啡   , Index: 0
Class name: 小熊猫 , Index: 1
Class name: 披萨   , Index: 2
Class name: 救生艇 , Index: 3
Class name: 校车   , Index: 4
Class name: 橙子   , Index: 5
Class name: 灯笼椒 , Index: 6
Class name: 瓢虫   , Index: 7
Class name: 考拉   , Index: 8
Class name: 跑车   , Index: 9

类别标签对应的 one-hot 标签:

for index, class_name in enumerate(class_names):one_hot = tf.one_hot(index, len(class_names)).numpy()print(f"Class: {class_name}, One-hot: {one_hot}")
---
Class: 咖啡  , One-hot: [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Class: 小熊猫, One-hot: [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
Class: 披萨  , One-hot: [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
Class: 救生艇, One-hot: [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
Class: 校车  , One-hot: [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
Class: 橙子  , One-hot: [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
Class: 灯笼椒, One-hot: [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
Class: 瓢虫  , One-hot: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
Class: 考拉  , One-hot: [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
Class: 跑车  , One-hot: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]

2.1.3 保存和读取类别标签

将类别标签写入文本文档:

with open('tiny_VGG_class_names.txt', 'w') as file:for class_name in class_names:file.write(f"{class_name}\n")

从文本文档中读取类别标签: 

with open('tiny_VGG_class_names.txt', 'r') as file:class_names = [line.strip() for line in file]print(class_names)
---
['咖啡', '小熊猫', '披萨', '救生艇', '校车', '橙子', '灯笼椒', '瓢虫', '考拉', '跑车']

2.2 读取单个图片

读取图片,并显示在 Jupyter Lab 中:

img = cv2.imread('./dataset/class_10_val/val_images/橙子/val_1067.JPEG')plt.figure(figsize=(2, 2))
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()

 对图片归一化操作:

normalization_layer = tf.keras.layers.Rescaling(1./255)
img_norm = normalization_layer(img)
img_norm = np.expand_dims(img_norm, axis=0)
np.shape(img_norm)
---
(1, 64, 64, 3)

训练过程中,对数据集做了归一化处理,推理时也要做同样的处理。

2.3 载入模型并推理

2.3.1 tiny-vgg 模型结构

# Create an instance of the model
filters = 10
tiny_vgg = Sequential([Conv2D(filters, (3, 3), input_shape=(64, 64, 3), name='conv_1_1'),Activation('relu', name='relu_1_1'),Conv2D(filters, (3, 3), name='conv_1_2'),Activation('relu', name='relu_1_2'),MaxPool2D((2, 2), name='max_pool_1'),Conv2D(filters, (3, 3), name='conv_2_1'),Activation('relu', name='relu_2_1'),Conv2D(filters, (3, 3), name='conv_2_2'),Activation('relu', name='relu_2_2'),MaxPool2D((2, 2), name='max_pool_2'),Flatten(name='flatten'),Dense(NUM_CLASS, activation='softmax', name='output')
])

2.3.2 运行推理

tiny_vgg = tf.keras.models.load_model('trained_vgg_best.h5')
prediction = tiny_vgg.predict(img_norm)
prediction
---
array([[6.2276758e-02, 3.6967881e-03, 9.2534656e-06, 4.8701441e-01,3.6426269e-02, 2.9939638e-02, 7.1093095e-03, 2.9743392e-02,2.1278052e-02, 3.2250613e-01]], dtype=float32)

注意:模型的最后一层已经经过 softmax 计算,无需单独调用 softmax 计算概率:

sum = np.sum(prediction)
print(sum)
---
1.0

 2.4 置信度柱状图

fig = plt.figure(figsize=(18,6))# 绘制左图-预测图,调整比例
ax1 = plt.subplot(1,6,1)
ax1.imshow(img)
ax1.axis('off')# 绘制右图-柱状图,调整比例
ax2 = plt.subplot(1,6,(2,6))
y = prediction[0]
ax2.bar(class_names, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
ax2.set_xticks(x)
ax2.set_xticklabels(class_names, fontproperties=font)
plt.ylim([0, 1.0]) # y轴取值范围# 显示置信度数值
for i in range(len(y)):plt.text(i, y[i] + 0.01, f'{y[i]:.2f}', ha='center', fontsize=15)plt.xlabel('类别', fontsize=20, fontproperties=font)
plt.ylabel('置信度', fontsize=20, fontproperties=font)
ax2.tick_params(labelsize=16)plt.tight_layout()

2.5 预测标签

predict_label = class_names[np.argmax(prediction)]
print("类别: {}".format(predict_label))# 显示图片
plt.figure(figsize=(2, 2))
plt.imshow(img)
plt.axis('off')
plt.show()

3. 完整代码

import tensorflow as tf
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import cv2font = matplotlib.font_manager.FontProperties(fname="./SimHei.ttf")vali_dataset = tf.keras.preprocessing.image_dataset_from_directory('./dataset/class_10_val/val_images/',image_size=(64, 64),batch_size=32)class_names = vali_dataset.class_namesimg = cv2.imread('./dataset/class_10_train/橙子/n07747607_0.JPEG')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)tiny_vgg = tf.keras.models.load_model('trained_vgg_best.h5')prediction = tiny_vgg.predict(img_norm)fig = plt.figure(figsize=(18,6))# 绘制左图-预测图,调整比例
ax1 = plt.subplot(1,6,1)
ax1.imshow(img)
ax1.axis('off')# 绘制右图-柱状图,调整比例
ax2 = plt.subplot(1,6,(2,6))
y = prediction[0]
ax2.bar(class_names, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
ax2.set_xticks(x)
ax2.set_xticklabels(class_names, fontproperties=font)
plt.ylim([0, 1.0]) # y轴取值范围# 显示置信度数值
for i in range(len(y)):plt.text(i, y[i] + 0.01, f'{y[i]:.2f}', ha='center', fontsize=15)plt.xlabel('类别', fontsize=20, fontproperties=font)
plt.ylabel('置信度', fontsize=20, fontproperties=font)
ax2.tick_params(labelsize=16)plt.tight_layout()

4. 总结

本博文详继续介绍 Tiny-VGG 项目,对模型进行单张图片的推理,关键要点包括:

1). 数据处理与标签管理:通过 image_dataset_from_directory 方法加载数据,并提取类别名称作为标签,同时展示了如何保存和读取类别标签到/从文本文件。

2). 图片预处理:读取单个图片,并对其进行归一化处理,以匹配训练时的数据处理方式,确保模型能正确解读输入数据。

3). 模型加载与推理:加载预训练的Tiny-VGG模型,并对单张图片进行推理,获取预测结果。

4). 结果可视化:通过绘制图片和置信度柱状图来可视化模型的预测结果,使用中文标签和显示每个类别的置信度值。

5). 实用代码示例:提供了完整的代码示例,包括数据加载、模型推理和结果展示,方便读者理解和实际操作。
 

这篇关于Vitis AI 基本认知(Tiny-VGG 标签获取+预测后处理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117049

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

Java Instrumentation从概念到基本用法详解

《JavaInstrumentation从概念到基本用法详解》JavaInstrumentation是java.lang.instrument包提供的API,允许开发者在类被JVM加载时对其进行修改... 目录一、什么是 Java Instrumentation主要用途二、核心概念1. Java Agent

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Spring Boot中获取IOC容器的多种方式

《SpringBoot中获取IOC容器的多种方式》本文主要介绍了SpringBoot中获取IOC容器的多种方式,包括直接注入、实现ApplicationContextAware接口、通过Spring... 目录1. 直接注入ApplicationContext2. 实现ApplicationContextA

Kotlin 协程之Channel的概念和基本使用详解

《Kotlin协程之Channel的概念和基本使用详解》文章介绍协程在复杂场景中使用Channel进行数据传递与控制,涵盖创建参数、缓冲策略、操作方式及异常处理,适用于持续数据流、多协程协作等,需注... 目录前言launch / async 适合的场景Channel 的概念和基本使用概念Channel 的

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn