分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序

本文主要是介绍分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序

文章目录

  • 前言
    • 分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序
  • 一、HHO-HKELM模型
      • HHO-HKELM 分类预测的详细原理和流程
        • 1. **混合核极限学习机(HKELM)概述**
        • 2. **哈里斯鹰优化算法(HHO)概述**
        • 3. **HHO-HKELM 分类预测的流程**
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序

一、HHO-HKELM模型

HHO-HKELM 分类预测的详细原理和流程

1. 混合核极限学习机(HKELM)概述

极限学习机(ELM)是一种单隐层前馈神经网络,其训练过程非常高效,主要包括以下步骤:

  • 随机生成隐藏层节点的权重和偏置
  • 计算隐层节点输出矩阵
  • 通过最小二乘法确定输出权重

HKELM 是 ELM 的一种扩展,通过使用混合核函数来增强模型的表达能力。核函数的选择影响模型的非线性映射能力,混合核函数结合了多个核函数的优点。

2. 哈里斯鹰优化算法(HHO)概述

哈里斯鹰优化(HHO)是一种模拟哈里斯鹰捕猎行为的优化算法,主要包括以下步骤:

  • 初始化鹰的种群:随机生成鹰的位置作为初始解。
  • 评估适应度:根据目标函数计算每个解的适应度。
  • 模拟鹰的行为:包括搜索猎物、围捕猎物和攻击猎物的行为。
  • 更新位置:通过模拟捕猎行为来更新每只鹰的位置。
  • 迭代:重复行为模拟和位置更新的过程,直到满足终止条件(如最大迭代次数或适应度阈值)。
3. HHO-HKELM 分类预测的流程
  1. 初始化 HHO

    • 随机生成一组哈里斯鹰的位置,每个位置代表 HKELM 模型中的核函数参数或其他超参数。
  2. 定义适应度函数

    • 使用 HKELM 模型训练数据,并计算分类性能指标(如准确率、F1 分数等)。适应度函数通常为 HKELM 在验证集上的分类性能指标。
  3. 评估适应度

    • 对每只鹰的位置(即 HKELM 的超参数)进行训练和验证,计算其适应度值。
  4. 模拟鹰的行为

    • 根据当前最优解(猎物)和其他较优解的位置信息,模拟鹰的行为(如包围、攻击),更新每只鹰的位置。更新过程会调整 HKELM 的超参数,以优化分类性能。
  5. 更新位置

    • 利用 HHO 算法的规则来更新每只鹰的位置,寻找最优的 HKELM 超参数组合。
  6. 迭代

    • 重复适应度评估和位置更新的过程,逐步优化 HKELM 的超参数配置。每次迭代后更新当前最优解,直到满足终止条件。
  7. 最终模型

    • 使用经过 HHO 优化的 HKELM 超参数训练最终的 HKELM 模型。将该模型用于分类预测,并在测试集上进行评估。

总结

HHO-HKELM 结合了哈里斯鹰优化算法和混合核极限学习机,通过 HHO 优化 HKELM 的超参数,增强了分类模型的性能和泛化能力。HHO 提供了一个全局搜索机制来寻找最优超参数,而 HKELM 利用混合核函数提高了模型的表达能力,从而提升分类预测的准确性。

二、实验结果

HHO-HKELM实验结果
在这里插入图片描述

HKELM实验结果在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117026

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文