Llama 3.1 405B:4050亿参数史上最强开源大模型

2024-08-28 18:44

本文主要是介绍Llama 3.1 405B:4050亿参数史上最强开源大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 概述

Meta公司推出了其最大的开源人工智能模型——Llama 3.1 405B,拥有4050亿个参数,与GPT-4o和Claude 3.5 Sonnet相媲美。该模型在16000个Nvidia H100 GPU上训练而成,现已在云平台上可用,并被应用于WhatsApp和Meta.ai中。它能够处理包括编码和摘要在内的八种语言任务,但仅限于文本。Llama 3.1模型拥有128000个token的上下文窗口,同时Meta还发布了更小规模的模型版本,即Llama 3.1 8B和70B。

在这里插入图片描述

02 关键信息

Meta公司推出了迄今为止最大的开源人工智能模型——Llama 3.1 405B,该模型包含4050亿个参数。虽然它并非史上最大的模型,但确实是近年来规模最大的模型之一,与OpenAI的GPT-4o和Anthropic的Claude 3.5 Sonnet等领先的专有模型形成竞争。该模型使用了16000个Nvidia H100 GPU进行训练,得益于先进的训练技术,现已可在AWS、Azure和Google Cloud等云平台上下载或使用。此外,它也被应用于WhatsApp和Meta.ai,为美国用户提供聊天机器人服务。Llama 3.1 405B能够执行包括编程、解答数学问题和摘要文档在内的多种任务,支持八种语言。然而,它仅限于文本,无法处理基于图像的查询。Meta公司还在研发能够识别图像、视频和生成语音的多模态Llama模型,但这些模型尚未公开发布。**关键特性与性能
**该模型使用相当于7500亿单词的15万亿个token的数据集进行训练。Meta公司为该模型优化了数据整理和质量保证流程。还使用了其他AI模型生成的合成数据来微调Llama 3.1 405B。然而,出于竞争和法律原因,Meta并未公开其训练数据的具体来源。在这里插入图片描述
上下文窗口与工具 Llama 3.1 405B拥有128000个token的更大上下文窗口,使其能够更好地总结更长的文本,并在对话中保持更好的上下文连贯性。Meta还发布了两个较小的模型,Llama 3.1 8B和Llama 3.1 70B,它们共享相同的上下文窗口。这些模型可以使用第三方工具和API来执行回答最新事件问题、解决数学问题和验证代码等任务。性能与许可 Llama 3.1 405B的性能与OpenAI的GPT-4相当,在与GPT-4o和Claude 3.5 Sonnet的对比中显示出混合结果。它在执行代码和生成图表方面表现优异,但在多语言能力和一般推理方面较弱。由于其规模庞大,运行该模型需要大量的硬件资源。Meta公司正在推广其较小的模型用于通用应用程序,并认为Llama 3.1 405B适合模型蒸馏和生成合成数据。在这里插入图片描述
Meta已更新Llama的许可证,允许开发者使用Llama 3.1模型系列的输出来开发第三方AI模型。但是,月活跃用户超过7亿的应用开发者必须向Meta申请特殊许可。在这里插入图片描述

03 使用

您还可以使用 Ollama 下载并使用此模型,您可以通过运行来完成此操作。

ollama run llama3.1

或者从Huggingface下载

https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f

创建一个程序,使用递归回溯算法或深度优先搜索算法生成完美迷宫,并具有可定制的大小和复杂性。

import randomclass Cell:def __init__(self, x, y):self.x = xself.y = yself.walls = [True, True, True, True]  # Top, Right, Bottom, Leftclass Maze:def __init__(self, width, height):self.width = widthself.height = heightself.cells = [[Cell(x, y) for x in range(width)] for y in range(height)]def generate(self):stack = []current_cell = self.cells[0][0]current_cell.walls[3] = False  # Remove left wall to start maze generationwhile True:neighbors = self.get_unvisited_neighbors(current_cell)if neighbors:next_cell = random.choice(neighbors)self.remove_walls(current_cell, next_cell)stack.append(current_cell)current_cell = next_cellelif stack:current_cell = stack.pop()else:breakdef get_unvisited_neighbors(self, cell):x, y = cell.x, cell.yneighbors = []if x > 0 and self.cells[y][x-1].walls[3]:neighbors.append(self.cells[y][x-1])if y < self.height - 1 and self.cells[y+1][x].walls[2]:neighbors.append(self.cells[y+1][x])if x < self.width - 1 and self.cells[y][x+1].walls[1]:neighbors.append(self.cells[y][x+1])if y > 0 and self.cells[y-1][x].walls[0]:neighbors.append(self.cells[y-1][x])return neighborsdef remove_walls(self, cell1, cell2):x1, y1 = cell1.x, cell1.yx2, y2 = cell2.x, cell2.yif x1 < x2:cell1.walls[1] = False  # Remove right wall of first cellcell2.walls[3] = False  # Remove left wall of second cellelif x1 > x2:cell1.walls[3] = False  # Remove left wall of first cellcell2.walls[1] = False  # Remove right wall of second cellelse:  # y1 < y2cell1.walls[0] = False  # Remove top wall of first cellcell2.walls[2] = False  # Remove bottom wall of second cell# Example usage:
maze = Maze(21, 11)  # Size must be odd for a perfect maze
maze.generate()# Print the maze (binary representation)
for row in maze.cells:for cell in row:print(cell.walls[0] * ' ', end='')print(cell.walls[1] * '|', end='')print(cell.walls[2] * '|', end='')print(cell.walls[3] * '-', end='')print()

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

这篇关于Llama 3.1 405B:4050亿参数史上最强开源大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115579

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小