道格拉斯-普克 Douglas-Peuker(DP算法) python php实现

2024-08-28 17:28

本文主要是介绍道格拉斯-普克 Douglas-Peuker(DP算法) python php实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

废话不多说,直接开干!

最近在做一个车联网项目,有一个场景是车辆定时上报当前所在经纬度等位置信息上报给平台,平台通过web页面在高德地图上展示车辆行驶路径。

说明

道格拉斯-普克算法 (Douglas–Peucker algorithm,亦称为拉默-道格拉斯-普克算法、迭代适应点算法、分裂与合并算法)是将曲线近似表示为一系列点,并减少点的数量的一种算法。它的优点是具有平移和旋转不变性,给定曲线与阈值后,抽样结果一定。—摘自百度百科

python 代码
安装模块Shapely

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple Shapely

# -*- coding:utf-8 -*-
"""
道格拉斯算法的实现
程序需要安装shapely模块
"""
import math
from shapely import wkt, geometry
import matplotlib.pyplot as pltclass Point:"""点类"""x = 0.0y = 0.0index = 0  # 点在线上的索引def __init__(self, x, y, index):self.x = xself.y = yself.index = indexclass Douglas:"""道格拉斯算法类"""points = []D = 1  # 容差def readPoint(self):"""生成点要素"""g = wkt.loads("LINESTRING(1 4,2 3,4 2,6 6,7 7,8 6,9 5,10 10)")coords = g.coordsfor i in range(len(coords)):self.points.append(Point(coords[i][0], coords[i][1], i))def compress(self, p1, p2):"""具体的抽稀算法"""swichvalue = False# 一般式直线方程系数 A*x+B*y+C=0,利用点斜式,分母可以省略约区# A=(p1.y-p2.y)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2))A = (p1.y - p2.y)# B=(p2.x-p1.x)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2))B = (p2.x - p1.x)# C=(p1.x*p2.y-p2.x*p1.y)/math.sqrt(math.pow(p1.y-p2.y,2)+math.pow(p1.x-p2.x,2))C = (p1.x * p2.y - p2.x * p1.y)m = self.points.index(p1)n = self.points.index(p2)distance = []middle = Noneif (n == m + 1):return# 计算中间点到直线的距离for i in range(m + 1, n):d = abs(A * self.points[i].x + B * self.points[i].y + C) / math.sqrt(math.pow(A, 2) + math.pow(B, 2))distance.append(d)dmax = max(distance)if dmax > self.D:swichvalue = Trueelse:swichvalue = Falseif (not swichvalue):for i in range(m + 1, n):del self.points[i]else:for i in range(m + 1, n):if (abs(A * self.points[i].x + B * self.points[i].y + C) / math.sqrt(math.pow(A, 2) + math.pow(B, 2)) == dmax):middle = self.points[i]self.compress(p1, middle)self.compress(middle, p2)def printPoint(self):"""打印数据点"""for p in self.points:print( "%d,%f,%f" % (p.index, p.x, p.y))def main():"""测试"""d = Douglas()d.readPoint()# d.printPoint()# 结果图形的绘制,抽稀之前绘制fig = plt.figure()a1 = fig.add_subplot(121)dx = []dy = []for i in range(len(d.points)):dx.append(d.points[i].x)dy.append(d.points[i].y)a1.plot(dx, dy, color='g', linestyle='-', marker='+')d.compress(d.points[0], d.points[len(d.points) - 1]) #稀释后轨迹# 抽稀之后绘制dx1 = []dy1 = []a2 = fig.add_subplot(122)for p in d.points:print(p.x,p.y)dx1.append(p.x)dy1.append(p.y)a2.plot(dx1, dy1, color='r', linestyle='-', marker='+')plt.show()if __name__ == '__main__':main()

运行结果
在这里插入图片描述
php代码

/*** 根据两个点求直线方程 ax+by+c=0* @param $xy1 string 点1,例如"1,1"* @param $xy2 string 点2,例如"2,2"* @return array*/function getLineByPoint($xy1, $xy2){$x1 = explode(",", $xy1)[0];//第一个点的横坐标$y1 = explode(",", $xy1)[1];//第一个点的纵坐标$x2 = explode(",", $xy2)[0];//第二个点的横坐标$y2 = explode(",", $xy2)[1];//第二个点的横坐标$a = $y2 - $y1;$b = $x1 - $x2;$c = ($y1 - $y2) * $x1 - $y1 * ($x1 - $x2);return [$a, $b, $c];}/*** 稀疏点* @param $points array 参数为["1,2","2,3"]点集* @param $max float 阈值,越大稀疏效果越好但是细节越差* @return array*/function sparePoints($points, $max){if (count($points) < 3) {return $points;}//        var_dump($points);die;$xy1 = $points[0];//取第一个点$xy1 = $xy1['glng'].','.$xy1['glat'];$xy2 = end($points);//取最后一个点$xy2 = $xy2['glng'].','.$xy2['glat'];
//        var_dump(end($points)['glat']);die;list($a, $b, $c) = getLineByPoint($xy1, $xy2);//获取直线方程的a,b,c值$ret   = [];//最后稀疏以后的点集$dmax  = 0;//记录点到直线的最大距离$split = 0;//分割位置for ($i = 1; $i < count($points) - 1; $i++) {$d = getDistanceFromPointToLine($a, $b, $c, $points[$i]);if ($d > $dmax) {$split = $i;$dmax  = $d;}}if ($dmax>$max) {//如果存在点到首位点连成直线的距离大于max,即需要再次划分$child1 = sparePoints(array_slice($points, 0, $split + 1), $max);//按split分成左边一份,递归$child2 = sparePoints(array_slice($points, $split), $max);//按split分成右边一份,递归//因为child1的最后一个点和child2的第一个点,肯定是同一个(即为分割点),合并的时候,需要注意一下$ret = array_merge($ret, $child1, array_slice($child2, 1));return $ret;} else {//如果不存在点到直线的距离大于阈值的,那么就直接是首尾点了return [$points[0], end($points)];}}$gps_list=  ["118.7727996753945,34.1246971539229","118.77485177448638,34.124702346094594","118.7831576932094,34.13298337245958","118.78533669945193,34.133335134266446",    ];$data = sparePoints($gps_list, "0.0001");//稀释万分之一

运行结果
在这里插入图片描述

这篇关于道格拉斯-普克 Douglas-Peuker(DP算法) python php实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115412

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/