数据结构(邓俊辉)学习笔记】串 07——KMP算法:分摊分析

2024-08-28 03:20

本文主要是介绍数据结构(邓俊辉)学习笔记】串 07——KMP算法:分摊分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.失之粗糙
  • 2.精准估计

1.失之粗糙

以下,就来对 KMP 算法的性能做一分析。我们知道 KMP 算法的计算过程可以根据对齐位置相应的分为若干个阶段,然而每一个阶段所对应的计算量是有很大区别的。很快就会看到,如果只是简单地从最坏的角度来进行估计,我们将无法准确地来评估这种算法,而实际上真正有效的方法是,放眼整个计算过程,将整体的计算成本分摊到每一个阶段。

没错,分摊。我们这里需要再一次地借助分摊的分析技巧,而这里我们将要采用的估算方法也是分拆分析中的一种典型手法。

我们首先来看一种貌似无可厚非,但实则非常粗糙的估算方法。
在这里插入图片描述

这一方法建议我们将注意力放在文本串中的任意字符上,因为这种方法认为,我们只要估算出每一个字符所参与的比对次数,也自然地就可以得到整体的比对次数。然而我们很快就会发现,在任何一个特定的字符处,我们的模式串的确有可能会多次地后移。实际上不能构造出这样的例子,也就是相对于文本串中的某个特定字符,模式串有可能需要连续的后移多次,并且用其中多答 Ω(m) 个字符,与文本串中的这个字符进行比对。当然具体的次数可能是m/3、m/40 或者m/500。但无论如何,在渐进的意义上,都可以达到Ω(m)次。因此,如果再考虑到主串所贡献的那个因子 n,那么按照这种思路,KMP 的时间复杂度似乎会高达Ω(n*m)。

这样一个分析结论多少会让我们感到沮丧,因为蛮力算法也不过如此。然而事实上,这种方法的确实失之粗糙,而接下来更为精细地分析将表明,KMP 算法的效率即便在最坏情况下也不会超过线性O(n)。

2.精准估计

在这里插入图片描述为了对KMP算法性能作出更为精细的分析,我们可以参照在第一章就确立的方法,将这个算法中,不涉及到实质计算内容的非迭代部分都删除掉,而将注意力集中于复杂度的主体,也就是其中的这个循环。

在这里,我们需要引入一个观察量 k。 在算法执行过程中的任何时刻,这个 k 都等于 2*i - j。实际上,在很多开发环境中,都提供了观察功能,允许你设置这样一个表达式,并且在算法的调试运行过程中,动态地给出表达式所对应的数值。

实际上,随的算法中这个迭代过程的不断推进,这个观察变量 k, 必然是单调递增的。这一性质并不难看出,实际上无非 if 和 else 两种可能。

  1. 首先,如果当前这步迭代选取的是 if 分支,那么,根据算法的流程,i 和 j 会同步地递增一个单位。于是,作为 2*i - j,k 应该恰好增加一个单位。
  2. 反之,如果当前这步迭代进入的是 else 分支,那么尽管 i 不会受到任何影响,但是 j 会被替换为它对应的 next 表项,你应该记得我们此前已经指出, j 所对应的那个 next 表项必然会严格地小于 j。也就是说,经过这样一次替代之后,在数值上 j 必然会严格地减少,所以 k 也至少会增加一个单位。

综合这两种情况,我们就会发现 ,k 随着迭代的进行的确会严格单调地不断递增。

因此,整个计算过程中所进行的迭代步数就绝对不会超过 k。也就是说只要我们能够界定 k 的上界,也就自然确定了整个算法复杂度的上界。那么 k 的变化幅度究竟是多大呢?

  1. 首先,既然 i 和 j 的初值都是0,所以 k 的初值也应该是0。
  2. 而在算法结束时,i 至多与 n 同阶,而 j 也至少是一个常数。这也就意味着在渐进的意义上,k 绝对不会超过线性的范围。

至此,我们也就确凿地给出了 KMP 算法性能的一个准确估计。是的,这里给出的估计方法非常初等,因此其结论也毋庸置疑。

当然,作为进一步的探求,你或许会好奇于这里的 k,也就是 2*i - j 的具体含义,自行探索。

在这里插入图片描述

当然,作为 KMP 算法的有机组成部分,我们也不要忘了 next 表的构造过程。然而,正如我们已经看到的,这个预处理算法的原理及过程与主算法完全相同,因此其复杂度也应该线性正比于它自己的输入规模,也就是模式串的长度 O(m)。

这篇关于数据结构(邓俊辉)学习笔记】串 07——KMP算法:分摊分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113580

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致