数据结构(邓俊辉)学习笔记】串 07——KMP算法:分摊分析

2024-08-28 03:20

本文主要是介绍数据结构(邓俊辉)学习笔记】串 07——KMP算法:分摊分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.失之粗糙
  • 2.精准估计

1.失之粗糙

以下,就来对 KMP 算法的性能做一分析。我们知道 KMP 算法的计算过程可以根据对齐位置相应的分为若干个阶段,然而每一个阶段所对应的计算量是有很大区别的。很快就会看到,如果只是简单地从最坏的角度来进行估计,我们将无法准确地来评估这种算法,而实际上真正有效的方法是,放眼整个计算过程,将整体的计算成本分摊到每一个阶段。

没错,分摊。我们这里需要再一次地借助分摊的分析技巧,而这里我们将要采用的估算方法也是分拆分析中的一种典型手法。

我们首先来看一种貌似无可厚非,但实则非常粗糙的估算方法。
在这里插入图片描述

这一方法建议我们将注意力放在文本串中的任意字符上,因为这种方法认为,我们只要估算出每一个字符所参与的比对次数,也自然地就可以得到整体的比对次数。然而我们很快就会发现,在任何一个特定的字符处,我们的模式串的确有可能会多次地后移。实际上不能构造出这样的例子,也就是相对于文本串中的某个特定字符,模式串有可能需要连续的后移多次,并且用其中多答 Ω(m) 个字符,与文本串中的这个字符进行比对。当然具体的次数可能是m/3、m/40 或者m/500。但无论如何,在渐进的意义上,都可以达到Ω(m)次。因此,如果再考虑到主串所贡献的那个因子 n,那么按照这种思路,KMP 的时间复杂度似乎会高达Ω(n*m)。

这样一个分析结论多少会让我们感到沮丧,因为蛮力算法也不过如此。然而事实上,这种方法的确实失之粗糙,而接下来更为精细地分析将表明,KMP 算法的效率即便在最坏情况下也不会超过线性O(n)。

2.精准估计

在这里插入图片描述为了对KMP算法性能作出更为精细的分析,我们可以参照在第一章就确立的方法,将这个算法中,不涉及到实质计算内容的非迭代部分都删除掉,而将注意力集中于复杂度的主体,也就是其中的这个循环。

在这里,我们需要引入一个观察量 k。 在算法执行过程中的任何时刻,这个 k 都等于 2*i - j。实际上,在很多开发环境中,都提供了观察功能,允许你设置这样一个表达式,并且在算法的调试运行过程中,动态地给出表达式所对应的数值。

实际上,随的算法中这个迭代过程的不断推进,这个观察变量 k, 必然是单调递增的。这一性质并不难看出,实际上无非 if 和 else 两种可能。

  1. 首先,如果当前这步迭代选取的是 if 分支,那么,根据算法的流程,i 和 j 会同步地递增一个单位。于是,作为 2*i - j,k 应该恰好增加一个单位。
  2. 反之,如果当前这步迭代进入的是 else 分支,那么尽管 i 不会受到任何影响,但是 j 会被替换为它对应的 next 表项,你应该记得我们此前已经指出, j 所对应的那个 next 表项必然会严格地小于 j。也就是说,经过这样一次替代之后,在数值上 j 必然会严格地减少,所以 k 也至少会增加一个单位。

综合这两种情况,我们就会发现 ,k 随着迭代的进行的确会严格单调地不断递增。

因此,整个计算过程中所进行的迭代步数就绝对不会超过 k。也就是说只要我们能够界定 k 的上界,也就自然确定了整个算法复杂度的上界。那么 k 的变化幅度究竟是多大呢?

  1. 首先,既然 i 和 j 的初值都是0,所以 k 的初值也应该是0。
  2. 而在算法结束时,i 至多与 n 同阶,而 j 也至少是一个常数。这也就意味着在渐进的意义上,k 绝对不会超过线性的范围。

至此,我们也就确凿地给出了 KMP 算法性能的一个准确估计。是的,这里给出的估计方法非常初等,因此其结论也毋庸置疑。

当然,作为进一步的探求,你或许会好奇于这里的 k,也就是 2*i - j 的具体含义,自行探索。

在这里插入图片描述

当然,作为 KMP 算法的有机组成部分,我们也不要忘了 next 表的构造过程。然而,正如我们已经看到的,这个预处理算法的原理及过程与主算法完全相同,因此其复杂度也应该线性正比于它自己的输入规模,也就是模式串的长度 O(m)。

这篇关于数据结构(邓俊辉)学习笔记】串 07——KMP算法:分摊分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113580

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject