【大模型LLMs】文本分块Chunking调研LangChain实战

2024-08-28 01:04

本文主要是介绍【大模型LLMs】文本分块Chunking调研LangChain实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【大模型LLMs】文本分块Chunking调研&LangChain实战

  • Chunking策略类型
    • 1. 基于规则的文本分块
    • 2. 基于语义Embedding分块
    • 3. 基于端到端模型的分块
    • 4. 基于大模型的分块
  • Chunking工具使用(LangChain)
    • 1. 固定大小分块(字符&token)
    • 2. 语义分块

总结目前主流的文本分块chunking方法,给出LangChain实现各类chunking方法的示例

Chunking策略类型

1. 基于规则的文本分块

  • 固定大小分块: 按照固定大小的字符数目/token数目以及特定的分隔符对文本进行切分,是最常见的分块方式,简单直接,不依赖NLP能力,成本低易于使用
    • chunk_size: 块大小
    • chunk_overlap: 重叠字符数目,允许不同块之间存在重复内容,以保证语义上下文的一致性和连贯性
    • tokenizer: 分词模型(非必需,直接用原字符分块则无需tokenizer)
  • 内容感知分块: 考虑文本本身的 语法/句法结构(显式的分隔符) 进行分块
    • 依赖显式的分隔符进行切块: 常用的标点符号、空格字符、换行符等
    • 依赖各类工具库: NLTK、spaCy等
  • 结构感知分块: 主要针对MarkdownHTML等具有明确结构格式的文档,对文本进行解析
  • 递归分块: 递归分块首先尝试按照一定的标准(如段落或标题)分割文本,如果分割后的文本块仍然过大,就会在这些块上重复进行分割过程,直到所有块的大小都符合要求

2. 基于语义Embedding分块

本质是基于滑动窗口的思想,依次计算相邻的两句话之间的语义相似度,满足阈值的视为表示同样的语义/主题,会划分到同一个块中,不满足阈值的则进行切分。

  • 文本表征: 基于BERT、OpenAI的Embedding model等预训练模型对所有文本进行embedding,获得文本的语义特征向量
  • 语义分析: 通过余弦相似度等方式计算两句话之间的语义关系
  • 分块决策: 判断两句话之间是否需要分块,一般基于语义相似度,超过阈值则划分至同一个块,反之则切分;尽量保证每个分块的语义独立和完整

3. 基于端到端模型的分块

  • NSP: 使用BERT模型的 下一句预测任务(Next Sentence Prediction,NSP) 判断两句话之间是否需要切分
  • Cross-Segment: 采用跨片段的注意力机制来分析文本。首先利用BERT模型获取句子的向量表示,然后将连续多个句子的向量表示输入到另一个BERT或者LSTM模型中,一次性预测每个句子是否为分块的边界
    在这里插入图片描述
  • SeqModel:在Cross-Segment基础上,增强了上下文表示,并通过自适应滑动窗口的思想提高模型速度。相比Cross-Segment,SeqModel 可以同时处理更多句子,通过自注意力机制建模更长上下文和句子间的依赖关系
    在这里插入图片描述

4. 基于大模型的分块

基本等效于single-document的summarization extraction任务,参考LLMs-based Summarization方法,通过知识蒸馏或提示工程的方式,让LLMs抽取文本中的要点

  • 基于知识蒸馏的方法: 一般采用teacher-student架构,由GPT4类参数规模较大的LLMs作为teacher,从全文中抽取摘要作为“标准答案”,作为训练语料微调Llama2-7B类参数规模较小的LLMs(student)
  • 基于CoT的方法: 设置预制问题/Plan规划等,让大模型按照要求给出回复

Chunking工具使用(LangChain)

1. 固定大小分块(字符&token)

from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitterdef get_document_text(doc_path_list: list[str]) -> list[str]:text_list = []for doc_path in doc_path_list:with open(doc_path, 'r', encoding='utf-8') as f:text = f.read()text_list.append(text)return text_listdef character_chunking(text_list: list[str], character_type: str="char"):if character_type == "char":# 字符级text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=128, separator="\n", strip_whitespace=True)elif character_type == "token":# token级别text_splitter = CharacterTextSplitter.from_tiktoken_encoder(model_name="gpt-4",chunk_size=512, chunk_overlap=128, separator="\n", strip_whitespace=True)else:returnchunking_res_list = text_splitter.create_documents(text_list)for chunking_res in chunking_res_list:print(chunking_res)print("*"*100)def recursive_character_chunking(text_list: list[str], character_type: str="char"):if character_type == "char":# 字符级text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=128, separators=["\n\n", "\n", "。", ".", "?", "?", "!", "!"], strip_whitespace=True)elif character_type == "token":# token级别text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(model_name="gpt-4",chunk_size=512, chunk_overlap=128, separators=["\n\n", "\n", "。", ".", "?", "?", "!", "!"], strip_whitespace=True)else:returnchunking_res_list = text_splitter.create_documents(text_list)for chunking_res in chunking_res_list:print(chunking_res)print("*"*100)if __name__ == "__main__":doc_path_list = ['../data/chunking_test.txt']text_list = get_document_text(doc_path_list)# character_chunking(text_list)recursive_character_chunking(text_list, character_type="token")

在这里插入图片描述

2. 语义分块

from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceBgeEmbeddingsdef get_document_text(doc_path_list: list[str]) -> list[str]:text_list = []for doc_path in doc_path_list:with open(doc_path, 'r', encoding='utf-8') as f:text = f.read()text_list.append(text)return text_listdef semantic_chunking(text_list: list[str]): # embeddings = OpenAIEmbeddings()  # 使用openai模型embeddings = HuggingFaceBgeEmbeddings(  model_name = '../../../model/bge-base-zh-v1.5') # 使用huggingface的bge embeddings模型text_splitter = SemanticChunker(embeddings = embeddings,breakpoint_threshold_type = "percentile",  # 百分位数breakpoint_threshold_amount = 30,  # 百分比sentence_split_regex = r"(?<=[。?!])\s+"  # 正则,用于分句)chunking_res_list = text_splitter.create_documents(text_list)for chunking_res in chunking_res_list:print(chunking_res)print("*"*100)if __name__ == "__main__":doc_path_list = ['../data/chunking_test.txt']text_list = get_document_text(doc_path_list)semantic_chunking(text_list)

在这里插入图片描述

这篇关于【大模型LLMs】文本分块Chunking调研LangChain实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113289

相关文章

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢