【大模型LLMs】文本分块Chunking调研LangChain实战

2024-08-28 01:04

本文主要是介绍【大模型LLMs】文本分块Chunking调研LangChain实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【大模型LLMs】文本分块Chunking调研&LangChain实战

  • Chunking策略类型
    • 1. 基于规则的文本分块
    • 2. 基于语义Embedding分块
    • 3. 基于端到端模型的分块
    • 4. 基于大模型的分块
  • Chunking工具使用(LangChain)
    • 1. 固定大小分块(字符&token)
    • 2. 语义分块

总结目前主流的文本分块chunking方法,给出LangChain实现各类chunking方法的示例

Chunking策略类型

1. 基于规则的文本分块

  • 固定大小分块: 按照固定大小的字符数目/token数目以及特定的分隔符对文本进行切分,是最常见的分块方式,简单直接,不依赖NLP能力,成本低易于使用
    • chunk_size: 块大小
    • chunk_overlap: 重叠字符数目,允许不同块之间存在重复内容,以保证语义上下文的一致性和连贯性
    • tokenizer: 分词模型(非必需,直接用原字符分块则无需tokenizer)
  • 内容感知分块: 考虑文本本身的 语法/句法结构(显式的分隔符) 进行分块
    • 依赖显式的分隔符进行切块: 常用的标点符号、空格字符、换行符等
    • 依赖各类工具库: NLTK、spaCy等
  • 结构感知分块: 主要针对MarkdownHTML等具有明确结构格式的文档,对文本进行解析
  • 递归分块: 递归分块首先尝试按照一定的标准(如段落或标题)分割文本,如果分割后的文本块仍然过大,就会在这些块上重复进行分割过程,直到所有块的大小都符合要求

2. 基于语义Embedding分块

本质是基于滑动窗口的思想,依次计算相邻的两句话之间的语义相似度,满足阈值的视为表示同样的语义/主题,会划分到同一个块中,不满足阈值的则进行切分。

  • 文本表征: 基于BERT、OpenAI的Embedding model等预训练模型对所有文本进行embedding,获得文本的语义特征向量
  • 语义分析: 通过余弦相似度等方式计算两句话之间的语义关系
  • 分块决策: 判断两句话之间是否需要分块,一般基于语义相似度,超过阈值则划分至同一个块,反之则切分;尽量保证每个分块的语义独立和完整

3. 基于端到端模型的分块

  • NSP: 使用BERT模型的 下一句预测任务(Next Sentence Prediction,NSP) 判断两句话之间是否需要切分
  • Cross-Segment: 采用跨片段的注意力机制来分析文本。首先利用BERT模型获取句子的向量表示,然后将连续多个句子的向量表示输入到另一个BERT或者LSTM模型中,一次性预测每个句子是否为分块的边界
    在这里插入图片描述
  • SeqModel:在Cross-Segment基础上,增强了上下文表示,并通过自适应滑动窗口的思想提高模型速度。相比Cross-Segment,SeqModel 可以同时处理更多句子,通过自注意力机制建模更长上下文和句子间的依赖关系
    在这里插入图片描述

4. 基于大模型的分块

基本等效于single-document的summarization extraction任务,参考LLMs-based Summarization方法,通过知识蒸馏或提示工程的方式,让LLMs抽取文本中的要点

  • 基于知识蒸馏的方法: 一般采用teacher-student架构,由GPT4类参数规模较大的LLMs作为teacher,从全文中抽取摘要作为“标准答案”,作为训练语料微调Llama2-7B类参数规模较小的LLMs(student)
  • 基于CoT的方法: 设置预制问题/Plan规划等,让大模型按照要求给出回复

Chunking工具使用(LangChain)

1. 固定大小分块(字符&token)

from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitterdef get_document_text(doc_path_list: list[str]) -> list[str]:text_list = []for doc_path in doc_path_list:with open(doc_path, 'r', encoding='utf-8') as f:text = f.read()text_list.append(text)return text_listdef character_chunking(text_list: list[str], character_type: str="char"):if character_type == "char":# 字符级text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=128, separator="\n", strip_whitespace=True)elif character_type == "token":# token级别text_splitter = CharacterTextSplitter.from_tiktoken_encoder(model_name="gpt-4",chunk_size=512, chunk_overlap=128, separator="\n", strip_whitespace=True)else:returnchunking_res_list = text_splitter.create_documents(text_list)for chunking_res in chunking_res_list:print(chunking_res)print("*"*100)def recursive_character_chunking(text_list: list[str], character_type: str="char"):if character_type == "char":# 字符级text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=128, separators=["\n\n", "\n", "。", ".", "?", "?", "!", "!"], strip_whitespace=True)elif character_type == "token":# token级别text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(model_name="gpt-4",chunk_size=512, chunk_overlap=128, separators=["\n\n", "\n", "。", ".", "?", "?", "!", "!"], strip_whitespace=True)else:returnchunking_res_list = text_splitter.create_documents(text_list)for chunking_res in chunking_res_list:print(chunking_res)print("*"*100)if __name__ == "__main__":doc_path_list = ['../data/chunking_test.txt']text_list = get_document_text(doc_path_list)# character_chunking(text_list)recursive_character_chunking(text_list, character_type="token")

在这里插入图片描述

2. 语义分块

from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceBgeEmbeddingsdef get_document_text(doc_path_list: list[str]) -> list[str]:text_list = []for doc_path in doc_path_list:with open(doc_path, 'r', encoding='utf-8') as f:text = f.read()text_list.append(text)return text_listdef semantic_chunking(text_list: list[str]): # embeddings = OpenAIEmbeddings()  # 使用openai模型embeddings = HuggingFaceBgeEmbeddings(  model_name = '../../../model/bge-base-zh-v1.5') # 使用huggingface的bge embeddings模型text_splitter = SemanticChunker(embeddings = embeddings,breakpoint_threshold_type = "percentile",  # 百分位数breakpoint_threshold_amount = 30,  # 百分比sentence_split_regex = r"(?<=[。?!])\s+"  # 正则,用于分句)chunking_res_list = text_splitter.create_documents(text_list)for chunking_res in chunking_res_list:print(chunking_res)print("*"*100)if __name__ == "__main__":doc_path_list = ['../data/chunking_test.txt']text_list = get_document_text(doc_path_list)semantic_chunking(text_list)

在这里插入图片描述

这篇关于【大模型LLMs】文本分块Chunking调研LangChain实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113289

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3