Datawhale X 李宏毅苹果书 AI夏令营 入门 Task1-机器学习

2024-08-27 22:12

本文主要是介绍Datawhale X 李宏毅苹果书 AI夏令营 入门 Task1-机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 机器学习基础
  • 案例分析-视频的点击次数预测
    • 机器学习流程
    • 相关公式

机器学习基础

机器学习:机器具备有学习的能力/让机器具备找一个函数的能力。比如语音识别、图像识别、

机器学习有不同的类别。
1)回归:假设要找的函数的输出是一个数值/标量,这种机器学习的任务称为回归。
2)分类:分类任务要让机器做选择题。人类先准备好一些选项,这些选项称为类别。
3)结构化学习:机器不只是要做选择题或输出一个数字,而是产生一个有结构的物体,比如让机器画一张图,写一篇文章。这种叫机器产生有结构的东西的问题称为结构化学习。

案例分析-视频的点击次数预测

机器学习流程

1)构建模型
写出一个带有未知参数的函数(模型),用于预测未来观看次数。
例如, y = b + w x 1 y = b + wx_1 y=b+wx1,其中 y 是预测的观看次数, x 1 x_1 x1 是前一天的观看次数,b 和 w 是未知参数。
其中,带有未知的参数的函数称为模型。特征 x 1 x_1 x1是这个函数里面已知的,而 w 跟 b 是未知的参数。w 称为权重,b 称为偏置。
2)定义损失函数
损失函数用于评估模型预测值与实际值之间的差异。
例如,如果 b = 500 和 w = 1,则预测函数为 y = 500 + x 1 y = 500 + x_1 y=500+x1
计算每一条记录的预测值与实际值之间的差距,并求平均值得到损失。
3)最优化
使用梯度下降算法来调整模型参数,以最小化损失函数。
初始参数随机选取,然后根据损失函数的梯度来更新参数。
更新规则为: w 1 ← w 0 − η ∂ L / ∂ w ∣ w = w 0 w1 ← w0 - η ∂L/∂w | w=w_0 w1w0ηL/ww=w0,其中 η 是学习率。
梯度下降过程中可能遇到局部最小值,但这通常不是一个严重的问题。
4)结果
在训练数据上找到了最佳参数 w* = 0.97, b* = 100。
使用这些参数得到的平均误差约为 480。
在未见过的数据上(2021年的数据),模型的误差为 0.58。

相关公式

1.模型公式:
在这里插入图片描述
2.损失函数
在这里插入图片描述

3.参数更新
在这里插入图片描述

这篇关于Datawhale X 李宏毅苹果书 AI夏令营 入门 Task1-机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112925

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语