Spark的Stage划分和task最佳位置算法

2024-08-27 12:08

本文主要是介绍Spark的Stage划分和task最佳位置算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Stage的划分原理

1.Spark Application中可以因为不同的Action触发众多的job,一个Application中可以有很多的job,每个job是由一个或者多个Stage构成的,后面的Stage依赖于前面的Stage,也就是说只有前面依赖的Stage计算完毕后,后面的Stage才会运行。

2.Stage划分的依据就是宽依赖,何时产生宽依赖,例如reduceByKey,groupByKey的算子,会导致宽依赖的产生。

3.由Action(例如collect)导致了SparkContext.runJob的执行,最终导致了DAGScheduler中的submitJob的执行,其核心是通过发送一个case class JobSubmitted对象给eventProcessLoop。

eventProcessLoop是DAGSchedulerEventProcessLoop的具体实例,而DAGSchedulerEventProcessLoop是eventLoop的子类,具体实现EventLoop的onReceive方法,onReceive方法转过来回调doOnReceive

4.在doOnReceive中通过模式匹配的方法把执行路由到

5.在handleJobSubmitted中首先创建finalStage,创建finalStage时候会建立父Stage的依赖链条


说明:

1.所谓的missing就是说要进行当前的计算了。


二、task任务本地性算法实现

1.在submitMissingTasks中会通过调用来获得任务的本地性

2.具体一个Partition中的数据本地性的,在具体算法实现的时候首先查询DAGScheduler的内存数据结构是否存在当前的Partition的数据本地性的信息,如果有的话,则直接返回,如果没有首先会调用rdd.getPreferedLocations

例如:

向让Spark运行在HBase上或者一种现在还没直接支持的数据库上,此时开发者需要自定义RDD,为了保证Task任务数据的本地性,就必须实现RDD的getPreferedLocations

3.DAGScheduler计算数据本地性的时候,巧妙的借助了RDD自身的getPreferedLocations中的数据,最大化的优化了效率,因为getPreferedLocations中表明了每个Partition的数据本地性,虽然当前Partition可能被persist或者checkpoint,但是persist或者checkpoint默认情况下肯定是和getPeredLocations中的Partition的数据本地性是一致的,所以这就极大的简化了Task数据本地性算法的实现和效率的优化。

这篇关于Spark的Stage划分和task最佳位置算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111626

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java 中 Optional 的用法及最佳实践

《Java中Optional的用法及最佳实践》在Java开发中,空指针异常(NullPointerException)是开发者最常遇到的问题之一,本篇文章将详细讲解Optional的用法、常用方... 目录前言1. 什么是 Optional?主要特性:2. Optional 的基本用法2.1 创建 Opti

Java 字符串操作之contains 和 substring 方法最佳实践与常见问题

《Java字符串操作之contains和substring方法最佳实践与常见问题》本文给大家详细介绍Java字符串操作之contains和substring方法最佳实践与常见问题,本文结合实例... 目录一、contains 方法详解1. 方法定义与语法2. 底层实现原理3. 使用示例4. 注意事项二、su

Java 单元测试之Mockito 模拟静态方法与私有方法最佳实践

《Java单元测试之Mockito模拟静态方法与私有方法最佳实践》本文将深入探讨如何使用Mockito来模拟静态方法和私有方法,结合大量实战代码示例,带你突破传统单元测试的边界,写出更彻底、更独立... 目录Mockito 简介:为什么选择它?环境准备模拟静态方法:打破“不可变”的枷锁传统困境解法一:使用M

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略