基于胶囊网络的Fashion-MNIST数据集的10分类

2024-08-27 06:48

本文主要是介绍基于胶囊网络的Fashion-MNIST数据集的10分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

胶囊网络


原文:Dynamic Routing Between Capsules
源码:https://github.com/XifengGuo/CapsNet-Fashion-MNIST


数据集

Fashion-MNIST数据集由70000张 28 ∗ 28 28*28 2828大小的灰度图像组成,共有10个类别,每一类别各有7000张图像。数据集划分为两部分,即训练集和测试集。其中,训练集共有60000张图像,每个类别各有6000张;测试集共有10000张图像,每一类别各有1000张。

胶囊网络结构

网络模型

采用CapsNet网络模型,该网络由两部分组成:编码器和解码器。前3层网络为编码器,即卷积层、PrimaryCaps层和DigitCaps层;后3层网络为解码器,即三层全连接层。

编码器

编码器

编码器以 28 ∗ 28 28*28 2828大小的Fashion-MNIST图像作为输入,以 16 ∗ 10 16*10 1610大小的矩阵作为输出。

论文数据集为MNIST

卷积层

该层用于检测图像的基本特征。卷积核大小为 9 ∗ 9 9*9 99,步长为1,filter数为256,激活函数为Relu。输出大小为 20 ∗ 20 ∗ 256 20*20*256 2020256

PrimaryCaps层

该层接受卷积层检测到的基本特征,用于生成特征组合。该层共有32个PrimaryCapsules,每个PrimaryCapsules由8个卷积核为 9 ∗ 9 9*9 99,步长为2的卷积组成。输出大小为 6 ∗ 6 ∗ 8 ∗ 32 6*6*8*32 66832

DigitCaps层

该层由10个16维的DigitCapsules构成,每一个DigitCapsule对应一个类别。在DigitCapsules内部,每个输入通过 8 ∗ 16 8*16 816的权重矩阵将8维输入空间映射至16维Capsules输出空间。输出大小为 16 ∗ 10 16*10 1610

损失函数

L k = T k m a x ( 0 , m + − ∣ ∣ v k ∣ ∣ ) 2 + λ ( 1 − T k ) m a x ( 0 , ∣ ∣ v k ∣ ∣ − m − ) 2 L_k = T_k \, max(0, m^+ - ||v_k||)^2 + \lambda(1 - T_k) \, max(0, ||v_k|| - m^-)^2 Lk=Tkmax(0,m+vk)2+λ(1Tk)max(0,vkm)2

其中,若真实标签 k k k与预测标签 k k k相同,则 T k = 1 T_k = 1 Tk=1,否则为0。 m + m^+ m+ m − m^- m分别为0.9和0.1。 λ = 0.5 \lambda = 0.5 λ=0.5用于确保训练中的数值稳定性。

v j = ∥ s j ∥ 2 1 + ∥ s j ∥ 2 s j ∥ s j ∥ v_j = \frac{\|s_j\|^2}{1+\|s_j\|^2}\frac{s_j}{\|s_j\|} vj=1+sj2sj2sjsj

v j v_j vj表示第 j j j个capsule输出的向量。

s j = ∑ i c i j u ^ j ∣ i s_j = \sum_i c_{ij} \hat{u}_{j|i} sj=iciju^ji

s j s_j sj为高层capsules的输入。 c i j = e x p ( b i , j ) ∑ k e x p ( b i k ) c_{ij}=\frac{exp(b_{i,j})}{\sum_kexp(b_ik)} cij=kexp(bik)exp(bi,j)为耦合系数,其中 b i j = b i j + u ^ j ∣ i ⋅ v j b_{ij} = b_{ij} + \hat{u}_{j|i} \cdot v_j bij=bij+u^jivj,初始时 b i j = 0 b_{ij} = 0 bij=0

u ^ j ∣ i = W i j u i \hat{u}_{j|i} = W_{ij}u_i u^ji=Wijui

W i j W_{ij} Wij 表示权重矩阵, u i u_i ui为低层capsules的输出, u ^ i j \hat{u}_{ij} u^ij为预测向量,可视为底层capsules的输出向量进行仿射变换。

动态路由算法

动态路由算法

解码器

解码器

解码器由三层全连接层构成,用于重建图像,损失函数为MSE函数。训练时仅使用正确的DigitCap向量。

实现细节

初始学习率为0.001,其随迭代次数增大而衰减,batch size为100,共100个epoch。

结果

![][4]

这篇关于基于胶囊网络的Fashion-MNIST数据集的10分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110942

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很